165 research outputs found

    Effects of drinking patterns on prospective memory performance in college students [pre-print]

    Get PDF
    OBJECTIVE: Traditional college students are at a critical juncture in the development of prospective memory (PM). Their brains are vulnerable to the effects of alcohol. METHOD: There were 123 third and fourth year college students, 19-23 years old, who completed the Self-Rating Effects of Alcohol (SREA), Modified Timeline Follow-back (TFLB), Brief Young Adult Alcohol Consequences Scale (BYAACS), and Alcohol Effects Questionnaire (AEQ) once per month on a secure online database, as reported elsewhere (Dager et al., 2013). Data from the 6 months immediately before memory testing were averaged. In a single testing session participants were administered the Mini International Neuropsychiatric Interview-Diagnostic and Statistical Manual for Mental Disorders-Fourth Edition-Text Revision (MINI-DSM-IV-TR), measures of PM (event-based and time-based), and retrospective memory (RM). Based on the average score of six consecutive monthly responses to the SREA, TLFB, and AEQ, students were classified as nondrinkers, light drinkers, or heavy drinkers (as defined previously; Dager et al., 2013). Alcohol-induced amnesia (blackout) was measured with the BYAACS. RESULTS: We found a relationship between these alcohol use classifications and time-based PM, such that participants who were classified as heavier drinkers were more likely to forget to perform the time-based PM task. We also found that self-reported alcohol-induced amnesia (blackouts) during the month immediately preceding memory testing was associated with lower performance on the event-based PM task. Participants\u27 ability to recall the RM tasks suggested the PM items were successfully encoded even when they were not carried out, and we observed no relationship between alcohol use and RM performance. CONCLUSION: Heavy alcohol use in college students may be related to impairments in PM. (PsycINFO Database Recor

    A voxel-wise assessment of growth differences in infants developing autism spectrum disorder

    Get PDF
    Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area

    Heavy Drinking in College Students Is Associated with Accelerated Gray Matter Volumetric Decline over a 2 Year Period

    Get PDF
    Background: Heavy and/or harmful alcohol use while in college is a perennial and significant public health issue. Despite the plethora of cross-sectional research suggesting deleterious effects of alcohol on the brain, there is a lack of literature investigating the longitudinal effects of alcohol consumption on the adolescent brain. We aim to probe the longitudinal effects of college drinking on gray matter change in students during this crucial neurodevelopmental period.Methods: Data were derived from the longitudinal Brain and Alcohol Research in College Students (BARCS) study of whom a subset underwent brain MRI scans at two time points 24 months apart. Students were young adults with a mean age at baseline of about 18.5 years. Based on drinking metrics assessed at both baseline and followup, subjects were classified as sustained abstainers/light drinkers (N = 45) or sustained heavy drinkers (N = 84) based on criteria established in prior literature. Gray matter volumetric change (GMV-c) maps were derived using the longitudinal DARTEL pipeline as implemented in SPM12. GMV-c maps were then subjected to a 1-sample and 2-sample t-test in SPM12 to determine within- and between-group GMV-c differences in drinking groups. Supplementary between-group differences were also computed at baseline only.Results: Within-group analysis revealed significant decline in GMV in both groups across the 2 year followup period. However, tissue loss in the sustained heavy drinking group was more significant, larger per region, and more widespread across regions compared to abstainers/light drinkers. Between-group analysis confirmed the above and showed a greater rate of GMV-c in the heavy drinking group in several brain regions encompassing inferior/medial frontal gyrus, parahippocampus, and anterior cingulate. Supplementary analyses suggest that some of the frontal differences existed at baseline and progressively worsened.Conclusion: Sustained heavy drinking while in college was associated with accelerated GMV decline in brain regions involved with executive functioning, emotional regulation, and memory, which are critical to everyday life functioning. Areas of significant GMV decreases also overlapped largely with brain reward and stress systems implicated in addictive behavior

    Increased Extra-axial Cerebrospinal Fluid in High-Risk Infants Who Later Develop Autism

    Get PDF
    Background We previously reported that infants who developed autism spectrum disorder (ASD) had increased cerebrospinal fluid (CSF) in the subarachnoid space (i.e., extra-axial CSF) from 6 to 24 months of age. We attempted to confirm and extend this finding in a larger independent sample. Methods A longitudinal magnetic resonance imaging study of infants at risk for ASD was carried out on 343 infants, who underwent neuroimaging at 6, 12, and 24 months. Of these infants, 221 were at high risk for ASD because of an older sibling with ASD, and 122 were at low risk with no family history of ASD. A total of 47 infants were diagnosed with ASD at 24 months and were compared with 174 high-risk and 122 low-risk infants without ASD. Results Infants who developed ASD had significantly greater extra-axial CSF volume at 6 months compared with both comparison groups without ASD (18% greater than high-risk infants without ASD; Cohen's d = 0.54). Extra-axial CSF volume remained elevated through 24 months (d = 0.46). Infants with more severe autism symptoms had an even greater volume of extra-axial CSF from 6 to 24 months (24% greater at 6 months, d = 0.70; 15% greater at 24 months, d = 0.70). Extra-axial CSF volume at 6 months predicted which high-risk infants would be diagnosed with ASD at 24 months with an overall accuracy of 69% and corresponding 66% sensitivity and 68% specificity, which was fully cross-validated in a separate sample. Conclusions This study confirms and extends previous findings that increased extra-axial CSF is detectable at 6 months in high-risk infants who develop ASD. Future studies will address whether this anomaly is a contributing factor to the etiology of ASD or an early risk marker for ASD

    Early brain development in infants at high risk for autism spectrum disorder

    Get PDF
    Brain enlargement has been observed in children with Autism Spectrum Disorder (ASD), but the timing of this phenomenon and its relationship to the appearance of behavioral symptoms is unknown. Retrospective head circumference and longitudinal brain volume studies of 2 year olds followed up at age 4 years, have provided evidence that increased brain volume may emerge early in development.1, 2 Studies of infants at high familial risk for autism can provide insight into the early development of autism and have found that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life3,4. These observations suggest that prospective brain imaging studies of infants at high familial risk for ASD might identify early post-natal changes in brain volume occurring before the emergence of an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that cortical surface area hyper-expansion between 6-12 months of age precedes brain volume overgrowth observed between 12-24 months in the 15 high-risk infants diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep learning algorithm primarily using surface area information from brain MRI at 6 and 12 months of age predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81%, sensitivity of 88%). These findings demonstrate that early brain changes unfold during the period in which autistic behaviors are first emerging

    Language delay aggregates in toddler siblings of children with autism spectrum disorder

    Get PDF
    Abstract Background Language delay is extremely common in children with autism spectrum disorder (ASD), yet it is unclear whether measurable variation in early language is associated with genetic liability for ASD. Assessment of language development in unaffected siblings of children with ASD can inform whether decreased early language ability aggregates with inherited risk for ASD and serves as an ASD endophenotype. Methods We implemented two approaches: (1) a meta-analysis of studies comparing language delay, a categorical indicator of language function, and language scores, a continuous metric, in unaffected toddlers at high and low familial risk for ASD, and (2) a parallel analysis of 350 unaffected 24-month-olds in the Infant Brain Imaging Study (IBIS), a prospective study of infants at high and low familial risk for ASD. An advantage of the former was its detection of group differences from pooled data across unique samples; an advantage of the latter was its sensitivity in quantifying early manifestations of language delay while accounting for covariates within a single large sample. Results Meta-analysis showed that high-risk siblings without ASD (HR-noASD) were three to four times more likely to exhibit language delay versus low-risk siblings without ASD (LR-noASD) and had lower mean receptive and expressive language scores. Analyses of IBIS data corroborated that language delay, specifically receptive language delay, was more frequent in the HR-noASD (n = 235) versus LR-noASD group (n = 115). IBIS language scores were continuously and unimodally distributed, with a pathological shift towards decreased language function in HR-noASD siblings. The elevated inherited risk for ASD was associated with lower receptive and expressive language scores when controlling for sociodemographic factors. For receptive but not expressive language, the effect of risk group remained significant even when controlling for nonverbal cognition. Conclusions Greater frequency of language delay and a lower distribution of language scores in high-risk, unaffected toddler-aged siblings support decreased early language ability as an endophenotype for ASD, with a more pronounced effect for receptive versus expressive language. Further characterization of language development is warranted to refine genetic investigations of ASD and to elucidate factors influencing the progression of core autistic traits and related symptoms

    Association of Sex with Neurobehavioral Markers of Executive Function in 2-Year-Olds at High and Low Likelihood of Autism

    Get PDF
    Importance: Children with autism and their siblings exhibit executive function (EF) deficits early in development, but associations between EF and biological sex or early brain alterations in this population are largely unexplored. Objective: To investigate the interaction of sex, autism likelihood group, and structural magnetic resonance imaging alterations on EF in 2-year-old children at high familial likelihood (HL) and low familial likelihood (LL) of autism, based on having an older sibling with autism or no family history of autism in first-degree relatives. Design, Setting, and Participants: This prospective cohort study assessed 165 toddlers at HL (n = 110) and LL (n = 55) of autism at 4 university-based research centers. Data were collected from January 1, 2007, to December 31, 2013, and analyzed between August 2021 and June 2022 as part of the Infant Brain Imaging Study. Main Outcomes and Measures: Direct assessments of EF and acquired structural magnetic resonance imaging were performed to determine frontal lobe, parietal lobe, and total cerebral brain volume. Results: A total of 165 toddlers (mean [SD] age, 24.61 [0.95] months; 90 [54%] male, 137 [83%] White) at HL for autism (n = 110; 17 diagnosed with ASD) and LL for autism (n = 55) were studied. The toddlers at HL for autism scored lower than the toddlers at LL for autism on EF tests regardless of sex (mean [SE] B = -8.77 [4.21]; 95% CI, -17.09 to -0.45; η2p= 0.03). With the exclusion of toddlers with autism, no group (HL vs LL) difference in EF was found in boys (mean [SE] difference, -7.18 [4.26]; 95% CI, 1.24-15.59), but EF was lower in HL girls than LL girls (mean [SE] difference, -9.75 [4.34]; 95% CI, -18.32 to -1.18). Brain-behavior associations were examined, controlling for overall cerebral volume and developmental level. Sex differences in EF-frontal (B [SE] = 16.51 [7.43]; 95% CI, 1.36-31.67; η2p= 0.14) and EF-parietal (B [SE] = 17.68 [6.99]; 95% CI, 3.43-31.94; η2p= 0.17) associations were found in the LL group but not the HL group (EF-frontal: B [SE] = -1.36 [3.87]; 95% CI, -9.07 to 6.35; η2p= 0.00; EF-parietal: B [SE] = -2.81 [4.09]; 95% CI, -10.96 to 5.34; η2p= 0.01). Autism likelihood group differences in EF-frontal (B [SE] = -9.93 [4.88]; 95% CI, -19.73 to -0.12; η2p= 0.08) and EF-parietal (B [SE] = -15.44 [5.18]; 95% CI, -25.86 to -5.02; η2p= 0.16) associations were found in girls not boys (EF-frontal: B [SE] = 6.51 [5.88]; 95% CI, -5.26 to 18.27; η2p= 0.02; EF-parietal: B [SE] = 4.18 [5.48]; 95% CI, -6.78 to 15.15; η2p= 0.01). Conclusions and Relevance: This cohort study of toddlers at HL and LL of autism suggests that there is an association between sex and EF and that brain-behavior associations in EF may be altered in children at HL of autism. Furthermore, EF deficits may aggregate in families, particularly in girls

    Neuroimaging in anxiety disorders

    Get PDF
    Neuroimaging studies have gained increasing importance in validating neurobiological network hypotheses for anxiety disorders. Functional imaging procedures and radioligand binding studies in healthy subjects and in patients with anxiety disorders provide growing evidence of the existence of a complex anxiety network, including limbic, brainstem, temporal, and prefrontal cortical regions. Obviously, “normal anxiety” does not equal “pathological anxiety” although many phenomena are evident in healthy subjects, however to a lower extent. Differential effects of distinct brain regions and lateralization phenomena in different anxiety disorders are mentioned. An overview of neuroimaging investigations in anxiety disorders is given after a brief summary of results from healthy volunteers. Concluding implications for future research are made by the authors

    Adaptive prior probability and spatial temporal intensity change estimation for segmentation of the one-year-old human brain

    Get PDF
    The degree of white matter (WM) myelination is rather inhomogeneous across the brain. White matter appears differently across the cortical lobes in MR images acquired during early postnatal development. Specifically at 1-year of age, the gray/white matter contrast of MR T1 and T2 weighted images in prefrontal and temporal lobes is reduced as compared to the rest of the brain, and thus, tissue segmentation results commonly show lower accuracy in these lobes. In this novel work, we propose the use of spatial intensity growth maps (IGM) for T1 and T2 weighted images to compensate for local appearance inhomogeneity. The IGM captures expected intensity changes from 1 to 2 years of age, as appearance homogeneity is greatly improved by the age of 24 months. The IGM was computed as the coefficient of a voxel-wise linear regression model between corresponding intensities at 1 and 2 years. The proposed IGM method revealed low regression values of 1–10% in GM and CSF regions, as well as in WM regions at maturation stage of myelination at 1 year. However, in the prefrontal and temporal lobes we observed regression values of 20–25%, indicating that the IGM appropriately captures the expected large intensity change in these lobes mainly due to myelination. The IGM is applied to cross-sectional MRI datasets of 1-year-old subjects via registration, correction and tissue segmentation of the IGM-corrected dataset. We validated our approach in a small leave-one-out study of images with known, manual ‘ground truth’ segmentations
    corecore