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Abstract
The degree of white matter (WM) myelination is rather inhomogeneous across the brain. White
matter appears differently across the cortical lobes in MR images acquired during early postnatal
development. Specifically at 1-year of age, the gray/white matter contrast of MR T1 and T2
weighted images in prefrontal and temporal lobes is reduced as compared to the rest of the brain,
and thus, tissue segmentation results commonly show lower accuracy in these lobes. In this novel
work, we propose the use of spatial intensity growth maps (IGM) for T1 and T2 weighted images
to compensate for local appearance inhomogeneity. The IGM captures expected intensity changes
from 1 to 2 years of age, as appearance homogeneity is greatly improved by the age of 24 months.
The IGM was computed as the coefficient of a voxel-wise linear regression model between
corresponding intensities at 1 and 2 years. The proposed IGM method revealed low regression
values of 1–10% in GM and CSF regions, as well as in WM regions at maturation stage of
myelination at 1 year. However, in the prefrontal and temporal lobes we observed regression
values of 20–25%, indicating that the IGM appropriately captures the expected large intensity
change in these lobes mainly due to myelination. The IGM is applied to cross-sectional MRI
datasets of 1-year-old subjects via registration, correction and tissue segmentation of the IGM-
corrected dataset. We validated our approach in a small leave-one-out study of images with
known, manual ‘ground truth’ segmentations.
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INTRODUCTION
Image segmentation methods are widely used in neurodevelopmental analyses to study
anatomical differences and functionalities across all ages (Gilmore et al., 2010; Gilmore et
al., 2007; Hazlett et al., 2011; Knickmeyer et al., 2008; Shaw et al., 2006). Many proposed
methods segment MR images into tissue classes of white matter (WM), gray matter (GM)
and cerebrospinal fluid (CSF). Common approaches for segmentation include Expectation
Maximization (EM) (Roche et al., 2011), Artificial Neural Network (Perez de Alejo et al.,
2003) and fuzzy classification-based algorithms (Shen et al., 2005). These methods work
well on images from subjects older than 2 years of age, a point in development when the
WM of the brain is mature enough to appear mostly homogenous across the brain.
Consequently, volumetric studies evaluating GM and WM maturation changes in full-term
children have been conducted mainly in subjects older than 2 years of age (Caviness et al.,
1996; Giedd et al., 1996; Sowell et al., 2004). However, they fail to accurately represent
WM around 1 year of age due to the progress of myelination in WM. The progress of WM
maturation is inhomogeneous across the brain, following a pattern of posterior-to-anterior
lobes and superior to inferior progression (Colby et al., 2011; Tzarouchi et al., 2009). The
intensity of late myelinating WM often appears similar to GM intensity, strongly affecting
MRI appearance. Consequently, at 1 year of age, the prefrontal lobes and inferior temporal
pole show a reduced WM/GM contrast as compared to other lobes (Figure. 1). Not
surprisingly, standard tissue segmentation methods, which assume homogeneous within-
class appearance across the image produce incorrect results within the prefrontal and
temporal lobes even after correcting intensity nonuniformity. Commonly, white matter is
under-segmented in inferior temporal and prefrontal lobe. In order to address this issue, the
addition of a mixed WM/GM class or the use of regional/lobar atlases was previously
proposed, often with limited success, unless paired longitudinal datasets existed (Merisaari
et al., 2009; Shi et al., 2010a; Shi et al., 2010b). For the reminder of this paper, WM regions
that are comparatively under-myelinated will be called immature WM.

Related studies
There are two main categories for methods compensating of immature WM in MRIs of 1-
year-olds: a classifier-based approach and an atlas-based approach. (Claude et al., 2004)
proposed a classifier-based approach by segmenting immature WM parts of premature brain
using a semi-automatic strategy including the pixel-wise region growing method and a novel
method of image intensity gradient generation. The myelination intensity correction inside
the WM was used to update Gaussian mixture model parameters for the WM cluster
computation. After myelination correction, segmentation is achieved via combining several
segmentation methods from a watershed segmentation-based method, rigid transformation
and combination with prior probability images in the SPM2 package, and a Hidden Markov
Random Field method. This method and most such classifier-based segmentation methods
tend to overestimate the intensity compensation due to local over-fitting.

To reduce such overestimation, atlas-based approaches define spatial tissue priors for white
matter regions at different stage of white matter maturation in a known brain atlas space.
Such a brain atlas represent typical subjects at similar developmental age with a large
number of often manually determined regional tissue class priors. The brain atlas image
template, as well as the tissue priors, are registered and transferred to the subject image
being segmented. In (Weisenfeld and Warfield, 2009), which focused on newborn MRI
scans, the registration of atlas and priors are used to automatically learn subject-specific
class-condition density functions, which are then fused to form an optimal estimate of the
targets’ segmentation. (Shi et al., 2010a) applied an approach using atlas-based
segmentation from a later time-point image of the same subject also for neonatal brain
segmentation. This approach takes advantage of the fact that brain gyrification remains
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mainly stable during postnatal development for full-term infants. However, these
segmentation results fully depend on availability of longitudinal datasets. To overcome this
limitation, (Shi et al., 2010b) proposed a multi-region-multi-reference framework for atlas-
based neonatal brain segmentation parcellating the average atlas into multiple regions, and
applying an exemplar for image clustering into different sub-populations.

Motivation of current study
The white matter maturational process in the first few years of postnatal human life shows a
relatively large degree of regional inhomogeneity (Murakami et al., 1999). At one year of
age, the white matter in the prefrontal and inferior temporal lobes is at a reduced level of
myelination and consequently shows reduced WM/GM contrast as compared to other
cerebral regions. The purpose of this study is to develop a novel brain tissue segmentation
method for cross-sectional 1-year-old MRI datasets using a novel spatial intensity growth
map (IGM) that compensates for the white matter intensity appearance inhomogeneity. The
proposed method is evaluated on selected T1-weighted images of 1-year-old subjects with
manual ‘ground truth’ segmentations.

METHOD
The proposed segmentation procedure is based on a local intensity changes that captures
expected intensity changes from 1 to 2 years of age (see Figure 2 for an overview of the
methods), The IGM is applied to MRI images by deformable registration and subsequent
intensity correction (section 2.3). The modified image is then segmented with an enhanced
EM-based tissue segmentation method (section 2.4). In order to achieve optimal tissue
priors, we further employed an EM-like optimization of existing prior tissue probability
maps to fit known expert rater segmentations (section 2.5).

Training data
The subject population employed for the creation of the proposed IGM method consisted of
fourteen subjects with paired longitudinal T1− (160 slices with TR=2400ms, TE=3.16 ms,
flip angle=8, field of view 256 × 256) and T2-weighted (160 slices with TR=3200ms,
TE=499ms, flip angle=120, field of view 256 × 256) MR scans at 12 and 24 months. The
subject scans were selected from scans acquired as part of the IBIS (Infant Brain Imaging
Study) network (http://www.ibis-network.org) at 4 different sites (University of North
Carolina, University of Washington at Seattle, Washington University at Saint Louis and the
Children’s Hospital of Philadelphia. All datasets were acquired on 3T Siemens Tim Trio
scanners at 1 × 1 × 1 mm3 resolution.

Preprocessing
The fourteen-paired T1- and T2-weighted images were first separately corrected for
geometric distortions (Fonov V, 2010) as well as intensity non-uniformity (Sled et al.,
1998). All T2-weighted images were rigidly registered to the corresponding T1-weighted
images via mutual information registration. For cases where the automatic co-registration
failed we manually initialized the registration procedure. Then both T1 and T2 were
transformed to stereotaxic space based on the registration of the T1 scan. Intensity histogram
equalization to reference image, 1-year-old template, was then performed on these registered
images (Nyul et al., 2000). Next, the skull was extracted using FSL’s BET (Brain Extraction
Tool) on all T1w images (Smith, 2002), The computed T1 brain mask was applied to the T2
image. Corresponding 1 and 2-year-old skull-stripped T1w images were next aligned with
nine parameters similarity registration. The 1-year-old T1 data was then aligned with an
affine followed by a thin-plate spline based deformable registration into a prior 1-year-old
template data set (Collins et al., 1994; Fonov et al., 2011). Finally, the concatenated
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registration transformation matrix was applied to each of the T2-weighted 1-year-old image
and the T1- and T2-weighted 2-year-old images. The prior atlas space employed here is an
unbiased, age-appropriate (1-year) atlas template computed via joint deformable registration
that simultaneously minimizes the differences of intensity and transformation from 104
training images from the 1-year-old dataset within the IBIS study (Fonov et al., 2011).

Spatial prior intensity growth map (IGM) generation
While MRI images of 1 year old subjects exhibit myelination related regional WM intensity
inhomogeneity, by 2-years of age, the white matter has almost reached maturity and exhibits
less intensity variation on MRI. We propose to compute a spatial prior intensity growth map
(IGM) that aims at capturing this change in MR intensity from 1 to 2 years. In the
preprocessing described above we established voxel-wise correspondence across subjects at
1 year of age as well as within subjects from 1 to 2 years of age in the average template
space. Employing this voxel-wise correspondence, we compute the IGM in template space
as the local coefficient map from a voxel-wise linear regression model between the local
intensity changes at the paired 2 year and 1-year-old data in each voxel. While the common
linear regression model also includes a constant term, we did not consider such a constant,
as we assume consistent zero intensity for the image background at both ages.

‘Yv’ denotes the intensity at 2-years of age, and ‘Xv’ at 1-year. The estimated local
regression coefficients, αv, voxel v were computed over their six connected neighborhood, j,
to reduce variability of the regression coefficients due to registration errors. It is noteworthy,
that the proposed IGM is not directly applied as part of the tissue classification step, but
rather serves as a correction factor of the original image intensities. Thus, each local
coefficient was estimated voxel-wise from 7 (6+1) voxels and 14 datasets with a total of 98
samples. For T1w images, the coefficient αv is expected to show high values in areas of
high intensity change and low values for those regions of moderate intensity change from 1-
to 2-years of age (see Figure 3 and 4). The results for T2 images are expected to show the
inverse behavior.

Enhanced EM-segmentation via IGM and WM skeletonization (IGM-EM)
The overview of proposed IGM segmentation method is shown in Figure 5. Like most atlas
based segmentation approaches, our EM segmentation registers a prior atlas template to a
new subject’s T1 or T2 datasets and maps the atlas tissue priors to the subject space.
Registration is achieved via a deformable, b-spline based registration optimizing local
mutual information (Collins et al., 1994). In our approach, we also map the IGM map into
the subject image space. The mapped T1 and T2 IGMs are then multiplied with each T1 and
T2 weighted image to yield intensity corrected T1 and T2 images to serve as input to our
EM-based tissue segmentation (Delignon et al., 1997). The EM framework was applied with
the mapped tissue probability priors to the subject’s T1 and T2 weighted images after voxel-
wise multiplication with the local IGM coefficients. The expectation step started with given

 from the mapped 1-year-old atlas, and we compute the probability density as
Gaussian mixture model with 4 classes (WM (mature + immature WM), GM, CSF and
background).
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For X =(X1, X2,…., XN) is a sample of N independent observations from a mixture of two
multivariate Gaussian model (Van Leemput et al., 1999).

Where class is represented by k (k=1,2,3,4) at EM iteration (i). This step is iterated until
convergence to a local maximum of the likelihood function (D = dimension):

In addition to the posterior WM, GM and CSF probability maps, our EM segmentation
approach also provides a partial volume estimation map (PVE) for each tissue type (Tohka
et al., 2004). As the WM is often thin and highly variable in the temporal pole and posterior
occipital lobes, the application of the proposed IGM can leave those WM areas under-
segmented and can lead to disconnected WM parts. To correct for this, we employed a
thinning-based 1D-skeleton of the WM-PVE map binarized at an empirical threshold of
40% to further enhance the posterior WM probability by setting the WM posterior
probability at the WM-PVE-skeleton Sv to 1 (Figure 6). This process did little to the overall
volume (less than 1% change), but provided considerable enhancement to any potential
cortical thickness analysis following the tissue segmentation.

Since the topology of cerebral WM is assumed to be simply one-connected, i.e., of spherical
topology, when disregarding subcortical structures, we further eliminated isolated WM
voxel regions. We also observed that ringing artifacts due to motion combined with the
expected, reduced GM/WM contrast in 1-year olds could lead to over-corrections during the
intensity non-uniformity pre-processing step, which subsequently resulted in WM being
over-segmented in superior cortical regions. To prevent such over-corrections, we employed
a conservative, minimal cortex GM+CSF mask to reserve a thin layer towards the inside
starting at the inner skull surface (WM+GM+CSF) only for GM and CSF. The thickness of
this minimal cortex mask thickness is conservatively set at 3 mm given an expected CSF
contribution of 1–2 mm in most cortical regions. Figure 7 shows the effects of cortex mask.
WM segmentation errors are visible in superior parts and lateral temporal areas without the
cortex mask.

Thus, the final hard segmentation map K(v) was then computed as follows:
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Optimization of prior tissue probability maps
As is the case for all atlas based tissue classification methods, the tissue segmentation result
of our IGM–EMS method is strongly dependent on the prior tissue probability maps defined
in the atlas template space. In our application, the initial tissue class priors in the atlas space
were determined by deformable registration of an existing 4-year-old atlas (Hazlett et al.,
2011) with known probability priors into the 1-year-old atlas. Figure. 2 shows an overview
of generating adapted prior probabilities for the 1-year-old atlas. The 1-year-old atlas image
was created via an unbiased age-appropriate atlas building (Fonov et al., 2011) from 104
subject dataset available as part of the IBIS network (see section 2.1). The 4-year-old atlas
image was then registered to this 1-year-old image via Automatic Nonlinear Image
Matching and Anatomical Labeling (Collins D.L., 1995) and tissue priors were propagated
to the 1-year-old atlas space. Due to the differences in local image WM/GM contrast at 1
and 4 years of age, small registration errors resulted in insufficient tissue segmentation
quality especially in the prefrontal and temporal lobes. Thus, an additional step was
performed to improve the prior tissue probability maps using expert manual segmentations
of additional datasets.

Specifically, we selected 5 further cases from the same IBIS network study to be segmented
manually by the same expert (MG) for all cases and form a standard “ground truth” dataset.
These segmentation were established by extensive manual adaptation of segmentation maps
computed with another atlas based EM segmentation method called ABC (http://
www.nitrc.org/projects/abc/) (Prastawa et al., 2003). Using the interactive segmentation tool
ITK-SNAP (http://www.itksnap.org), the expert determined manual segmentations of WM,
GM and CSF on the T1 weighted images.

As the first step though to improve the propagated 4-year-old probability priors, we
employed the proposed IGM-EMS segmentation of the 14 training subjects already
employed in the IGM computation. The resulting segmentation maps were mapped back in
the atlas space, where they were averaged voxel-wise to represent a first updated prior
probability maps. Then, we employed the above described ground truth to iteratively
improve the atlas tissue prior maps. For each iteration, we computed the IGM-EMS
segmentations, as well as resulting difference maps to the ground truth for each tissue class
(0 = correct segmentation; +q = false positive; −q = false negative, q was set at 1.0). The
difference maps were transformed back to atlas space, where they were voxel-wise averaged
across the 5 cases. The updated atlas prior maps were finally computed by straightforward
subtraction of the difference maps. This procedure was iterated until the prior maps showed
less than 1% cumulative change across all priors.

Evaluation EM segmentation with IGM
Our proposed IGM-EM segmentation method was evaluated using the same five selected
datasets with expert segmentations (ground truths). In order to compare our methods against
previous methods, these images were also segmented with a conventional EM approach
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(Delignon et al., 1997), FSL-FAST method based on a hidden Markov random field model
and an associated EM algorithm (Zhang et al., 2001), and Artificial Neural Network method
of the constrained Laplacian-based automated segmentation with proximities (CLASP)
pipeline (Kim et al., 2005). The conventional EM method is the same basic EM method that
we employed within IGM-EM (see 2.4). To allow for a fair comparison, we generated
optimized prior tissue probability maps by applying the above method for each method
separately. Furthermore, all segmentations were computed using a leave-one-out strategy
over the prior maps, rendering the proposed evaluation fully unbiased. Thus, in order to
compute the set of segmentations, we generated separate optimized prior tissue probability
maps for each method and for each image using the expert segmentations in the remaining
ground truth cases only. As the evaluation criterion we selected the Dice error: 1 − 2 × |X ∩
Y|/(|X| + |Y|) and Tanimoto error: 1 − |X ∩ Y|/(|X| + |Y| − |X ∩ Y|). Both of these
measurements have been suggested and successfully employed in recent segmentation
challenges at MICCAI conferences (Heimann et al., 2009; Styner M, 2008; van Ginneken B,
2007)

RESULTS
Intensity growth map (IGM) for correcting the intensity in immature white matter regions

As can be seen in Figure 4, the computed T1 IGM reflects the expected maturation-related
MR intensity changes between 1 and 2 years. Figure. 3 represents different coefficients
dependent on tissue types between 1- and 2-year-old data. GM and CSF regions, which
should remain mainly unaffected by the myelination process, reveal relatively low
regression coefficients αv between 1.0 and 1.1 in the T1 image. In WM regions that already
underwent considerable myelination, we measured a similar coefficient αv to those in GM
and CSF regions. However, in those WM areas that are known to exhibit a comparatively
lower stage of myelination at 1 year of age, we observe 20–30% intensity differences
between 1- and 2-year-olds (i.e. coefficients αv around 1.25). The IGM coefficients for the
T2 weighted images provide the same interpretations, although inversely related to the T1
weighted IGM values. In both T1 and T2 IGMs, the superior frontal lobe, inferior temporal
lobe and temporal pole changed the most. GM maturation occurs throughout the brain from
inferior to superior and from posterior to anterior (Tzarouchi et al., 2009). Also, WM
increase and myelination progress follow similar pattern of age-related changes (Neil et al.,
2002; Xydis et al., 2006a; Xydis et al., 2006b). Finally, IGM corrected MR images of 1-
year-old subjects appear visually similar to the appearance of a 2-year-old MR image
(Figure 8).

Prior probability for the one year old atlas
The optimized prior GM, WM and CSF probabilities converged within four iterations of the
prior probability optimization procedure. The coronal view displays the optimized prior
probability maps in Figure 9.

EM segmentation with IGM
We validated the accuracy of the IGM-EM segmentation methods via five datasets with
known manual segmentations employing a leave-one-out scheme for all parts of the
validation. In comparison to conventional EM segmentation, a clear improvement in the
inferior frontal, temporal and posterior occipital lobes is visible in Figure 10. These regions
are at a lower stage of myelination and a higher anatomical variation at 1 year of age. The
conventional EM without IGM tends to underestimate WM in pre-/superior frontal and
inferior temporal areas due to the observed immature myelination. In contrast, our IGM-EM
method appropriately segments WM in these areas. This is also visible in Figure 11, which

Kim et al. Page 7

J Neurosci Methods. Author manuscript; available in PMC 2014 January 15.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



shows the detailed performance of our proposed IGM-EM versus that of the conventional
EM, FSL’s FAST and the Artificial Neural Network methods.

Overall, our proposed method provides the lowest error of all segmentation methods tested
in our study. Furthermore, in areas with expected comparatively low anatomical variation,
Tissue segmented results of IGM-EM have overall low Dice errors such as in the frontal
(GM: 8.904, WM: 9.052), prefrontal (GM: 8.038, WM: 11.438) and parietal lobes (GM:
9.658, WM: 10.684). On the other hand, the occipital lobe (GM: 12.324, WM: 16.668) and
the temporal lobe (GM: 9.872, WM: 15.48) show slightly higher error scores than the other
regions.

The average Dice and Tanimoto error ratio of our proposed method has lower mean and
standard deviation (GM: 9.75±1.00 and WM: 12.66±0.87) than the other algorithms:
conventional EM (GM: 18.38±1.76 and WM: 26.41±3.59), FSL’s FAST (GM: 10.51±1.42
and WM: 14.24±2.34) and neural network (GM: 10.69±1.21 and WM: 14.06±1.43). FLS’s
FAST also provides generally good segmentation results, though still often insufficient in
handling immature WM areas. As can be seen in Figure 12, while the volumetric
measurements from FSL’s FAST are closest to those of the ‘ground truth’ the Dice error is
greater than for IGM-EM. For the Artificial Neural Network method, relatively low Dice
and Tanimoto error ratio are observed (as compared to traditional EM) with relatively high
volumetric measurement errors though.

Using paired t-test statistics, we observed that our IGM method shows significantly higher
performance than all other methods in all lobar regions except in the temporal lobe where
the result of FSL is a similar with that of our proposed method. However, if all lobes are
incorporated in the statistical analysis, IGM significantly outperforms FSL, whether we
analyze the performance on WM (p = 0.002) and GM (p = 0.003) separately or jointly (p =
0.00004). Even though the performance of IGM and FSL is not statistically different within
temporal lobe, this is likely due to the low sample size (n=5) as IGM has overall higher dice
scores, as well as a lower standard deviation than FSL even within the temporal lobe (see
Table 1).

It is important to note that for all approaches evaluated here, including our IGM method, the
white matter segmentation in the temporal lobe is the most challenging. In addition, IGM
was additionally evaluated on 288 datasets from IBIS network study with a 93.3% success
rate without need for manual correction. The main source of errors in this study is motion
artifacts leading to segmentation errors in several lobes.

DISCUSSION
Accurate brain segmentation of MR datasets of subjects at 1 year of age is an important task.
For example, infants, who will be diagnosed with autism at a later age, display early
symptoms already at 1 year of age such as significantly less eye contact or less
responsiveness to their name being called, as well as impairments in attention behaviors.
Recently, researchers have shown that these symptoms closely relate to brain morphometry
in lateral-temporal, superior-frontal and lateral-frontal areas using lobar volume and cortical
thickness (Ozonoff et al., 2010; Yirmiya and Charman, 2010; Zwaigenbaum et al., 2005).
Therefore, brain tissue volume and cortical thickness measurements, which are main
components of most traditional anatomical MRI studies, need the accurate brain tissue
segmentations to understand the developed brain changes at this period. However, in
postnatal development, such tissue segmentation is very challenging. Here, we propose a
correction and tissue segmentation methodology that allows a standard brain tissue
segmentation method to handle areas at comparatively low stages of myelination in 1-year-
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old brain MRIs. An advantage of our proposed methods is that the effect of such late
myelination is approximately corrected, resulting in more accurate segmentations.

The developmental trajectory of WM has been shown to be temporally complex and a
regionally dynamic function of age. There is significant background information for the
development of WM. In prior DTI studies, inferior areas have displayed lower fractional
anisotropy and higher diffusivity than superior areas, indicating that myelination processes
follow an inferior to superior and posterior to anterior myelination trajectory (Colby et al.,
2011). Similar patterns are clearly visible in our computed IGMs. This suggests that the
major intensity changes estimated in the IGMs are likely due to white matter myelination
processes from 1 to 2 years of age.

Even though T1w and T2w images were obtained using same machine type and MRI
protocol, image intensity variations caused by image devices itself, radio frequency field and
human body are expected (Axel et al., 1987). These variations have a direct impact on any
intensity-based analysis, such as the IGM segmentation method. Furthermore, the IGMs
were directly calculated by regressing intensity. Therefore, to generate accurate IGMs,
intensity normalization is a necessity.

When inspecting the residual errors of the IGM-EM method (Figure 13), the thalamic sub-
cortical GM regions show relatively large errors. It has been demonstrated by SPECT and
perfusion studies in full-term infants that the basal ganglia mature earlier than motor and
sensory cortex (Takahashi et al., 1999; Tokumaru et al., 1999). In another study, slower
development trajectory was observed in the thalamus compared to the basal ganglia
(Tzarouchi et al., 2009). The IGM map indicates low values of intensity change from 1 to 2
year of age. Consequently, the mislabeling of thalamic areas in IGM-EM is unlikely due to a
potentially uncorrected myelination effects, but rather likely due to the ambiguous intensity
boundary, generally present in MR T1/T2 imagery of the thalamus.

Since WM maturation changes in full-term children have been conducted mainly in subjects
older than 2 years of age, conventional segmentation approaches commonly show good
performance in that age range, though not at the younger age of 1-year. While our IGM-
method has been developed specifically for the appropriate segmentation of immature WM
regions in MR images of 1-year-old subjects, a similar approach could be employed for the
segmentation of datasets in younger ages, potentially up to 6–8 months. It is though unlikely
that this method could be straightforwardly extended to even younger ages due the age
related white-gray matter contrast inversion.

It further noteworthy, that through the use of a prior atlas with expected intensity changes,
the proposed IGM approach introduces a segmentation bias towards the average brain
morphometry. This bias is expected to be present in IGM results in addition to existing
biases originating from the standard atlas based EM scheme. In most current neuroimaging
studies, tissue segmentation methods employ atlases with its tissue prior probabilities, which
introduces a well-known, inherent bias towards average morphometry, such as in the widely
used FSL and ABC packages. Even small changes to the tissue priors or the atlas anatomical
image will result in potentially considerable changes in the segmentations. While the
additional intensity change prior in IGM provides further bias in a similar sense, we expect
its effects to be considerably smaller than the known bias in standard atlas based tissue
segmentation methods. When we tested IGM vs non-IGM versions of the same EM
algorithm, we could not detect (visually) any consistent additional bias towards the average
morphometry.

We are currently extending the proposed IGM by selectively applying an IGM to white-
matter only local intensity correction (based on the observed WM posterior) that is
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incorporated into the EM segmentation loop, as the major contrast changes are limited to the
white matter. Such a scheme would not provide a direct additional bias to non-white matter
tissue classes, such as CSF and GM.

In summary, we have presented and validated an IGM method for segmentation in MRIs of
1-year-old. This strategy is a straightforward, but effective method. The method is original
in that a prior training map, which was calculated using the paired MRIs, is applied for the
compensation of intensity values in immature WM regions. Novelty is also present in the
adaptive morphological segmentation post-processing designed for 1-year-old MRI.
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Highlights

1. We propose the intensity growth maps (IGM) to perform segmentation of one-
year old data.

2. The IGM captured intensity changes of 20–25% in immature WM regions.

3. We generate adaptive tissue probability map of one-year old data using IGM.

4. IGM-EM has a dice error ratio, GM: 9.75 and WM: 12.66.

5. The results of IGM-EM show good performance in temporal and prefrontal lobe
areas.
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Figure 1.
WM in early postnatal stage undergoes myelination that strongly affects MR appearance.
The intensity of immature WM (red circles) often appears similar to GM intensity within the
temporal (left: sagittal slice) and prefrontal lobes (right: transverse slice).
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Figure 2.
Overview of proposed IGM based segmentation method. T1 and T2 images underwent
several preprocessing steps such as correction of non-uniformities, registration into common
space with affine transformation and skull stripping. The IGM was calculated via regression
on the paired and aligned voxels (left shaded box). Initial prior probability obtained from a
deformably mapped 4-year-old atlas was adapted. These priors were finally employed for
the final IGM-EM segmentation method.
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Figure 3.
Regression plots from three selected voxels. Low coefficient values are observed in gray
matter areas (in green) and fully developed white matter areas (blue) between 1- and 2-year-
olds, whereas high coefficient values are found in immature WM areas (red).
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Figure 4.
The generated spatial intensity growth maps for T1 and T2 images. The dominant intensity
changes are observed in the temporal and pre-frontal lobes, where the IGM shows regression
coefficients of about 25%.

Kim et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2014 January 15.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 5.
Segmentation pipeline: Following skull stripping, the atlas template with its tissue priors and
IGM map is registered into the subject image space using deformable registration. After
IGM based intensity correction, partial volume estimates (PVE) are computed via adaptive
EM segmentation. The skeleton of the binarized PVE map and a thin inner brain mask is
employed to compute the final tissue segmentation. The inner brain mask is used to prevent
WM over-estimation, especially for superior areas.
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Figure 6.
Partial volume estimation of WM was enhanced using skeletonization of WM with threshold
40%. The original PVE-WM (a) and the skeletonization of PVE overlap into original PVE-
WM (b). Blue arrow indicates little changes in temporal areas (c). There are some missing
WM areas in mid teporal lobe (d), but enhaced PVE-WM using skeltonization PVE-WM
shows accurates segmentation results in mid temporal areas (e).
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Figure 7.
WM over-segmentation example (white arrows) without minimal cortical mask (a),
corrected with cortical mask (b).
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Figure 8.
Applied IGM to T1 image of 12 month data (middle column) and compared with 24 month
of same subject. The contrast between GM and WM improved in prefrontal area (a) and mid
temporal area (b).
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Figure 9.
The average 1-year-old atlas computed from IBIS data (Fonov et al, 2011) with updated
tissue priors optimized for the proposed IGM enhanced segmentation method using five
datasets with known ground truth segmentations.
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Figure 10.
Visual comparison of segmented results. The WM was under-estimated in prefrontal and
inferior temporal lobes using the conventional EM (third column) algorithm as compared to
the IGM-EM (fourth column) results and the expert ground truth. First column is the original
T1 image and second column shows the ground truth. Our proposed IGM-EM obtained
more accurate segmentation results in right (a) and left (b) inferior temporal lobe, right
middle/superior temporal lobe (c), left superior frontal lobe (d), right (e) and left (f) occipital
lobe.
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Figure 11.
Dice’s and Tanimoto’s coefficient error ratio was used to validate our results to the ground
truth, and compared with FSL’s FAST and CLASP’s Artificial Neural Network. The IGM-
EM errors are consistently lower than the ones of the other methods. The error bar shows
standard error of the mean.
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Figure 12.
Lobe volume differences across the methods. All segmented lobe volumes are quite similar
to those of the ground truth even if similarity scores are variable. In average, FSL’s FAST
shows the most similar volume results to those of ground truth. As Dice’s and Tanimoto’s
error ratios for FAST are greater than for IGM-EM or CLASP’s neural network method,
FAST likely compensates false positives with false negative errors.
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Figure 13.
The difference of segmentation results between ground truth and IGM-EM. Blue areas
highlight regions with white matter under-segmentation and red areas show regions of over-
segmentation. The sub-cortical area, especially thalamus areas, shows mislabeling of under-
estimation (blue).
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Table 1

P value indicates statistical difference of dice error ratio among the methods.

Conventional EM FSL Neural Network
IGM-EM

Total Brain (GM+WM) <0.00001 0.00004 <0.00001

Total GM <0.00001 0.00293 <0.00001

Total WM <0.00001 0.00214 <0.00001

Frontal GM+WM 0.00001 0.03338 0.00204

Prefrontal GM+WM 0.00003 0.02390 0.00015

Occipital GM+WM <0.00001 0.01076 0.00296

Parietal GM+WM 0.00002 0.01888 0.00003

Temporal GM+WM <0.00001 0.84185 0.01348
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