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Abstract

Background—We previously reported that infants who developed ASD had increased CSF in 

the subarachnoid space (i.e., extra-axial CSF) from 6–24 months of age (1). We attempt to confirm 

and extend this finding in a larger, independent sample.

Methods—A longitudinal MRI study of infants at-risk for ASD was carried out on 343 infants, 

who underwent neuroimaging at 6, 12, and 24 months; 221 were high-risk for ASD because of an 

older sibling with ASD; 122 were low-risk with no family history of ASD. Forty-seven infants 

were diagnosed with ASD at 24 months and were compared with 174 high-risk and 122 low-risk 

infants without ASD.

Results—Infants who developed ASD had significantly greater extra-axial CSF volume at 6 

months compared to both comparison groups without ASD (18% greater than high-risk infants 

without ASD; Cohen’s d=0.54). Extra-axial CSF volume remained elevated through 24 months 

(d=0.46). Infants with more severe autism symptoms had an even greater volume of extra-axial 

CSF from 6–24 months (24% greater at 6 months, d=0.70; 15% greater at 24 months, d=0.70). 

Extra-axial CSF volume at 6 months predicted which high-risk infants would be diagnosed with 

ASD at 24 months with an overall accuracy of 69% and corresponding 66% sensitivity and 68% 

specificity, which was fully cross-validated in a separate sample.

Conclusions—This study confirms and extends previous findings that increased extra-axial CSF 

is detectable at 6 months in high-risk infants who develop ASD. Future studies will address 

whether this anomaly is a contributing factor to the etiology of ASD or an early risk marker for 

ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is characterized by impairments in social communication 

and the presence of repetitive stereotyped behaviors beginning in early childhood and 

typically extending throughout life (2). ASD affects about 1–2% of children worldwide (3–

5). Younger siblings of children with ASD are at substantially increased risk for developing 

ASD and offer an important strategy to discover early risk markers in a population 

unselected for having ASD (6). There are currently no biomarkers detectable in the first year 

of life that distinguish children who develop ASD from those who do not. Moreover, studies 

of high-risk infants have demonstrated that the defining behavioral features of ASD 

generally unfold in the latter part of the first and the second years of life (7–9).
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Shen et al. (1) reported that high-risk infants who later developed ASD had increased extra-

axial cerebrospinal fluid (EA-CSF) volume from 6–24 months, which was associated with 

autism severity at 36 months. Extra-axial fluid is defined as CSF in the subarachnoid space, 

surrounding the cortical convexities (10–12). While increased EA-CSF had been previously 

associated with impaired motor function (13–16), it had not been previously examined in 

relationship to ASD. Our initial report raised the possibility that dysregulation of CSF flow 

during the first year of life may play some role in the early pathogenesis of ASD, and/or 

provide a marker of an underlying process that contributes to ASD. The importance of CSF 

and its role in brain development has been highlighted in recent years (17). Once thought to 

merely provide a protective cushion for the brain, CSF has been found to play a critical role 

in the transport of growth factors that regulate progenitor cell production (18) and neuronal 

differentiation (19). In addition, as CSF circulates through the developing brain, it removes 

inflammatory cytokines and proteins secreted by neurons that can otherwise accumulate and 

have a pathological effect on brain development (20; 21).

In this study we sought to confirm and extend these findings in a larger, independent sample 

of infants at high- and low- familial risk for ASD (HR and LR infants, respectively), as part 

of the Infant Brain Imaging Study (IBIS) (22; 23). The current study has several important 

differences and advances over the original study: (1) an independent sample; (2) multi-site 

study drawn from four clinical sites across the United States; (3) a sample size roughly seven 

times larger than the original sample; (4) a different image acquisition protocol than the 

original study (harmonized across the four IBIS sites); and (5) a fully automated image 

analysis procedure to quantify EA-CSF volume. Based on findings from Shen et al. (1), we 

hypothesized that (1) HR infants later diagnosed with ASD (HR-ASD) would show 

increased EA-CSF volume at 6 months, compared to HR and LR infants who do not develop 

ASD (HR-negative and LR-negative, respectively); (2) HR-ASD infants would show 

persistently increased EA-CSF through 24 months; and (3) increased EA-CSF would be 

associated with autism severity as well as early motor deficits.

METHODS AND MATERIALS

Participants

Infants at high and low familial risk for ASD were enrolled at four clinical sites (University 

of North Carolina, University of Washington, Washington University, and Children’s 

Hospital of Philadelphia) (23). HR infants had an older sibling with a clinical diagnosis of 

ASD, corroborated by the Autism Diagnostic Interview-Revised (ADI-R); (24). LR infants 

had a typically developing older sibling and no 1st or 2nd degree relatives with intellectual/

psychiatric disorders (9). See Supplement for full inclusion/exclusion criteria. Parents 

provided informed consent, and the institutional review boards at each site approved the 

research protocol.

Assessment

Infants were assessed at 6, 12 and 24 months with an MRI and a behavioral battery that 

included measures of cognitive development (Mullen Scales of Early Learning) (25) and 

adaptive functioning (Vineland Adaptive Scales) (26). DSM-IV-TR criteria (27) and the 
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Autism Diagnostic Observation Schedule-G (ADOS) (28) were administered to all 

participants at 24 months. The ADI-R was administered at 24 months to all parents of high-

risk infants and to all low-risk infants with clinical concerns. At 24 months, infants were 

classified as having ASD based on expert clinical judgment using DSM-IV-TR criteria (27) 

and all available clinical information, including the ADOS (28), ADI-R, and other 

behavioral measures. Further details on the assessment and diagnostic procedures can be 

found in Estes et al., 2015 (9). A small number of LR infants who met criteria for ASD 

(N=3) were excluded from the analysis because they were too few to constitute a 

comparison group and to keep the study design focused on ASD in the context of familial 

risk for ASD.

Infants were included in the analysis if the infant: (1) had a successful, high quality MRI at 

least at the initial 6 month visit; and (2) was assessed for an ASD diagnosis at the 24 month 

visit. A total of 343 infants (221 HR; 122 LR) met these criteria and were included in the 

analysis, yielding three outcome groups: [1] HR-ASD (N=47; 42 male, 5 female); [2] HR-

negative (N=174; 95 male, 79 female); and [3] LR-negative (N=122; 76 male, 46 female). 

Table 1 provides a description of participant characteristics on the primary behavioral 

measures. Table 2 lists the number of MRI scans in the analysis at 6, 12, and 24 months.

By virtue of the large sample of infants at risk, we conducted follow-up analyses to assess 

whether subgroups of HR-ASD subjects, defined on the basis of autism symptom severity, 

differed in their volume of EA-CSF. The HR-ASD group (N=47) was stratified into 

subgroups according to established, empirically derived categories on the ADOS. Lord and 

colleagues established the subgrouping algorithm, which combines the scores on two ADOS 

domains (Social Affect and Restricted, Repetitive Behaviors) to derive the cutoff threshold 

that yields reliable autism subgroups (29). We applied this same ADOS threshold (29) to 

stratify the infants in the ASD group into those with ADOS scores above the threshold 

(ASD-High subgroup; N=23) and below (ASD-Moderate subgroup; N=24). This approach is 

consistent with previous publications on this sample (9).

MRI Acquisition

Imaging data were collected during natural sleep at 6, 12, and 24 months (Table 2). T1- and 

T2-weighted scans (1mm3 voxels) were acquired. Description of the MRI acquisition, 

neuroradiological review, quality control, and cross-site reliability are detailed in a previous 

publication on this sample (22) and the Supplement.

Image Analysis and Quantification of Extra-axial CSF and Lateral Ventricles

In our earlier study, segmentation of EA-CSF was carried out manually (1). However, given 

the far greater number of scans in the current study, manual segmentation was not practical. 

Therefore, an automated algorithm to quantify EA-CSF and lateral ventricle (LV) volumes 

was developed based on the criteria used in the manual segmentation. (See Supplement for 

details on quantification and validation steps.) Ninety-nine percent of scans met quality 

inspection criteria for inclusion in the final analysis (N=804 scans; Table 2). The automated 

method showed a high correlation with the manual method (ICC=0.80). Figure 1 
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demonstrates an example of the resulting EA-CSF segmentation from the automated 

method.

Statistical Analysis

A longitudinal mixed effects model for repeated measures with unstructured covariance 

matrices was employed to analyze trajectories of EA-CSF and LV volume from 6 to 24 

months of age. This analytic method is suitable for an unbalanced design and allows for 

missing values in a longitudinal study. Independent variables of interest included main effect 

of group, linear effect of age, quadratic effect of age (age2), sex, and group interactions with 

each of these variables. Total cerebral volume (TCV) was included as a covariate given its 

relationship to EA-CSF and LV volumes (1) and to control for possible differences in brain 

size. Scan site was included as another control variable. Following significant omnibus 

results of the primary model described above, Bonferroni-corrected pairwise comparisons 

tested for cross-sectional group differences at each time point (6, 12 and 24 months), and 

estimated marginal means and the pooled standard deviation were generated to compute 

Cohen’s d effect sizes. Percent differences in model-adjusted volumes at each time point and 

Cohen’s d effect sizes are reported relative to the HR-negative group.

A fully cross-validated classification analysis was performed to determine whether EA-CSF 

volume at 6 months could correctly distinguish which infants would be classified with an 

ASD diagnosis at 24 months. The objective of the prediction analysis was to extend beyond 

what can be concluded by the mixed effects model by determining the specificity and 

sensitivity of EA-CSF volume at the single earliest time point (i.e., 6 months of age) to 

separate HR-ASD from HR-negative infants. Only HR infants were included in the 

prediction model to distinguish HR-ASD infants from HR-negative infants using data at 6 

months only. To remain consistent with the primary mixed effects model described above, 

the same covariates were included in the prediction model (sex, age, and TCV at 6 months). 

A 25-fold cross-validation was implemented where 1/25th of the IBIS sample (4%) was left 

out of the prediction model, the model was built (“trained”) on the remaining 96% subjects, 

and then was used to independently predict the 4% – this was repeated 25 times until the 

entire sample had been predicted (via a supervised machine learning classification with a 
balance-boosted trees ensemble algorithm using RUSBoost trees) (53). The overall accuracy 

of the prediction model was reported as the area under the receiver operating characteristic 

curve (AUC), with the corresponding sensitivity and specificity threshold determined by the 

receiver operating characteristic (ROC) curve. 95% confidence intervals for the reported 

proportions (sensitivity, specificity) were calculated according to the efficient-score method 

and corrected for continuity (54). We also performed an out-of-sample validation by using 

this model built on the IBIS data and testing it on the dataset from the original Shen et al. 

(2013) paper on EA-CSF.

Regression analyses (both ordinary least squares and robust regression ROBUSTREG in 

SAS) were generated to test the a priori hypothesis that EA-CSF at 6 months would be 

associated with gross motor ability measured at 6 months within the ASD group. Clinical 

variables of interest included Mullen subscale and Vineland motor scores.
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Group differences in LV volume were tested using the same mixed effects model described 

above, and linear regression was used to test for associations and group interactions between 

LV and EA-CSF at each time point. All tests were two-tailed with α = 0.05. All analyses 

were performed using SAS JMP software (SAS Institute, Cary, NC).

RESULTS

There were no significant group differences in demographic variables (race/ethnicity, 

maternal education level, or family income) (22). There were no significant group 

differences in age at each MRI time point (Table 1). As expected, at 24 months the HR-ASD 

group had significantly lower cognitive ability on the Mullen Early Learning Composite, and 

higher ASD symptom scores on the ADOS (total scores for Social Affect + Repetitive, 

Restricted Behaviors), compared to the two comparison groups (Table 1).

Extra-axial CSF volume

There was a significant negative effect of subject age (age: β=−3.38, F1,483=50.97, 

p<0.0001; age2: β=0.07, F1,486=40.02, p<0.0001) on EA-CSF volume. Total cerebral 

volume was significantly associated with EA-CSF (β=0.05, F1,264=28.51, p<0.0001). There 

was no significant main effect of sex or group x sex interaction (F1,277=0.08, p=0.78; group 

× sex: F2,398=2.46, p=0.09), indicating that EA-CSF did not differ significantly between 

male and female infants after controlling for age and TCV. There were no differences in EA-

CSF by scan site (F3,272=0.11, p=0.96).

High-risk infants who were later diagnosed with ASD had increased EA-CSF at 6 months, 

which remained significantly elevated through 24 months. Specifically, there was a 

significant main effect of group (β=16.01, F2,397=6.04, p=.0026), and no significant group × 

age interactions (group × age: F2,294=2.40, p=0.09; group × age2: F2,274=1.87, p=0.16), 

indicating that the increase in EA-CSF in the HR-ASD group relative to non-ASD groups 

was consistent over the interval studied (covariates included age, age2, TCV, sex, site). 

Direct group comparisons and inspection of the model parameter estimates indicated that, on 

average across the study period, the HR-ASD group had 12.20 cm3 more EA-CSF than the 

HR-negative group (β=12.20; se=3.96; t397=3.08; p=.002) and 12.14 cm3 more EA-CSF 

than the LR-negative group (β=12.14; se=4.10; t397=2.96; p=.003), after controlling for age, 

age2, TCV, sex, and site. There were no differences between the HR-negative and LR-

negative group (β=.06; se=2.11; t397=.03; p=.98). Figure 2 depicts an example of a LR infant 

with a normal level of EA-CSF, compared to a HR infant who had increased EA-CSF at 6, 

12, and 24 months and was diagnosed with ASD at 24 months. (See Supplemental Figure S1 

for example images from representative infants in each group who have EA-CSF volumes 

that are equal to their group’s average.) Figure 3 illustrates the group trajectories of EA-CSF 

from 6–24 months, with percent differences between model-adjusted group means and 

Cohen’s d effect size (relative to the HR-negative group) at each time point. (Individual 

trajectories are shown in supplemental Figure S2.)
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EA-CSF and Subgroups of Autism Severity

To examine whether subgroups with different levels of autism severity were associated with 

differences in EA-CSF volume, the ASD group was stratified into subgroups according to 

well-established, empirically derived categories on the ADOS that index severity of autism 

symptoms (9; 29). There was a significant main effect of group (β=25.77, F3,416=4.99, p=.

002) with the infants with more severe autistic behaviors (ASD-High) having significantly 

greater EA-CSF volume at all time points compared to each of the other groups, including 

the ASD-Moderate, HR-negative, and LR-negative groups (covariates: age, age2, TCV, sex, 

site). Direct group comparisons and inspection of the model parameter estimates revealed 

that, on average across the study period, the ASD-High group had significantly greater EA-

CSF than the ASD-Moderate group (β=19.31; se=8.19; t416=2.36; p=.02), HR-negative 

group (β=22.59; se=6.02; t416=3.75; p=.0002), and LR-negative group (β=22.61; se=6.11; 

t416=3.70; p=.0002), controlling for age, age2, TCV, sex, and site. The ASD-moderate group 

did not differ significantly from the HR-negative (β=3.28; se=5.38; t416=.61; p=.54) and LR-

negative groups (β=3.30; se=5.46; t416=.60; p=.55) in EA-CSF volume. Total cerebral 

volume was significantly associated with EA-CSF (β=0.05, F1,263=29.44, p<0.0001). There 

was no significant main effect of sex (F1,286=.34, p=0.56), indicating that EA-CSF volume 

did not differ between male and female infants after controlling for age and TCV. There was 

a significant group × sex interaction (F3,397=2.87, p=0.04) with the small number of female 

infants in the ASD-High group (n=2 of the 23 in the subgroup) having higher EA-CSF 

volume on average (t397=2.14; p=.03) compared to the male infants in the ASD-High group 

(n=21). Figure 4 illustrates the group trajectories of EA-CSF from 6–24 months, with 

percent differences between model-adjusted group means and Cohen’s d effect size (relative 

to the HR-negative group) at each time point. (Individual trajectories are shown in 

supplemental Figure S3.)

Does EA-CSF at 6 Months Predict Autism Diagnosis at 24 Months?

A fully cross-validated prediction analysis was performed to test whether EA-CSF volume at 

6 months could accurately classify which HR infants would be diagnosed as ASD vs. 

negative for ASD at 24 months. EA-CSF volume at 6 months classified HR-ASD infants at 

an overall accuracy of 69% (AUC=0.69), with corresponding sensitivity of 66% (95% CI: 

50.6–78.7) and specificity of 68% (95% CI: 60.3–74.6). We performed an out-of-sample 

validation on this model, which was built on the current dataset, by testing it on the dataset 

from the original Shen et al. (2013) paper on EA-CSF. The prediction model applied to the 

2013 dataset yielded similar accuracy: overall accuracy of 72%, sensitivity of 80% (95% CI: 

44.2–96.5), and specificity of 67% (95% CI: 38.7–87.0).

EA-CSF Association with Early Motor Skills within the ASD group

Given that motor symptoms are an early emerging feature in infants who develop ASD (7; 9; 

37) and that increased EA-CSF had previously been associated with motor impairments (13–

16), we hypothesized that EA-CSF in early infancy would be related to early motor function 

at 6 months within the HR-ASD group. EA-CSF volume at 6 months was significantly 

correlated with poorer motor skills at 6 months in two measures: the direct examination 

Mullen gross motor subscale (F1,45=11.72, p=.0013; R2=.207; r = −0.46; robust regression: 
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χ2= 12.55, df=1, p=.0004) and the parent-report Vineland motor skills sub scale (F1,45=7.28, 

p=.0098; R2=.134; r = −0.37; robust regression: χ2=11.02, df=1, p=.0009) (Figs. 5A–5B). 

There were no significant correlations between EA-CSF and other Mullen subscales at 6 

months: receptive language (F1,45=.99, p=.3253; R2=.022; r = −0.15; robust: χ2=.56, df=1, 

p=.4540), expressive language (F1,45=1.83, p=.1827; R2=.039; r = 0.20; robust: χ2=1.21, 

df=1, p=.2708), visual reception (F1,45=3.17, p=.0818; R2=.066; r = −0.26; robust: χ2=1.56, 

df=1, p=.2115), or fine motor (F1,45=3.19, p=.0810; R2=.066; r = −0.26; robust: χ2=2.54, 

df=1, p=.1109).

Relationship to Lateral Ventricle Volume

There were no significant group differences in LV volume (F2,383=1.98, p=0.14) or group × 

age interaction (F2,266=1.24, p=0.29). There was a significant negative effect of age on LV 

volume (β=−0.37, F1,602=11.72, p=0.0007). Total cerebral volume was significantly 

associated with LV volume (β=0.02, F1,496=44.34, p<0.0001). There was no significant 

main effect of sex (F1,335=1.43, p=0.23) or group × sex interaction (F2,331=0.20, p=0.82), 

indicating that LV volume did not differ between male and female infants after controlling 

for age and TCV. There were no differences in LV by scan site (F3,320=0.28, p=0.84).

The HR-ASD group did not show a significant correlation between LV and EA-CSF volume 

at 6 months (F1,44 =1.34, p=.25; R2 =.029; r = 0.17), 12 months (F1,28=1.35, p=.25; R2=.

046; r = 0.21), or 24 months (F1,30 =2.54, p=.12; R2 =.078; r=0.28), and the relationship 

between LV and EA-CSF did not differ significantly between groups at any age (group 

interaction at 6 months: F2,335=1.50, p=0.23; 12 months: F2,247=0.004, p=0.99; 24 months: 

F2,201=0.29, p=0.75).

DISCUSSION

In this study, high-risk infants diagnosed with ASD at 24 months had significantly increased 

EA-CSF volume from 6 months through 24 months of age. Differences in EA-CSF volume 

were not accounted for by brain size and were observed in the absence of enlarged 

ventricles. Because of the relatively large sample of infants at risk, it was possible to assess 

whether EA-CSF volume differed among subgroups defined by autism symptom severity. 

Increased EA-CSF volume was more pronounced from 6–24 months in the subgroup of 

infants who had the most severe autistic behaviors at 24 months. These results confirm and 

extend the findings of Shen et al. (1) in an independent sample of infants recruited from 

institutions across the United States, confirming that increased extra-axial CSF is a 

replicable brain anomaly that is detectable as early as 6 months of age and remains elevated 

through 24 months in high-risk infants who go on to develop ASD.

Although increased extra-axial CSF has been observed in the first year of life in the clinical 

radiology literature (10–12), excess CSF is thought to decrease to normal levels in the 

second year. However, longitudinal follow-up with imaging and behavioral assessment is 

rarely conducted (for review, see (38). There have been a few reports linking increased extra-

axial CSF with early motor delay (13–16), and early motor deficits have been widely 

reported in HR infants who later attain a diagnosis of ASD (7; 9; 37; 52). In the present 

study, increased EA-CSF volume at 6 months was associated with poorer motor skills on 
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both direct examination and parent report, supporting the hypothesis that increased EA-CSF 

may affect motor development during the prodromal period in autism, before behaviors 

diagnostic of ASD typically arise.

The question arises as to whether persistently increased EA-CSF indicates a role for 

abnormal CSF circulation in the pathogenesis of ASD or, alternatively, is epiphenomenal 

and indicative of some other underlying process. Excessive CSF in the subarachnoid space, 

in the absence of enlarged ventricles, could be an indication of impaired CSF circulation and 

absorption, which can lead to altered concentration of neural growth factors and potentially 

harmful metabolites that have a pathological effect on normal brain development (21). The 

recent discoveries of the glymphatic and meningeal lymphatic systems of the brain both 

highlight the importance of proper CSF circulation and absorption to clear metabolic 

byproducts from the brain (20; 39; 40). CSF circulation is responsible for the removal of 

potentially neurotoxic waste products and inflammatory cytokines that accumulate in the 

brain (21). For example, amyloid-beta (Aβ) is a neurotoxic protein that is cleared from the 

interstitial and subarachnoid space during CSF circulation and absorption (39). Amyloid-

beta has been found to be elevated in blood, peripheral CSF, and post mortem human brain 

tissue in individuals with ASD (41–45). Evidence of increased Aβ levels in ASD has been 

linked to sleep disturbances (which can disrupt clearance of Aβ) (20), seizures, and deficits 

in motor and cognitive function (41; 42). Altered CSF circulation results in an accumulation 

of metabolic byproducts and an imbalance of inflammatory cytokines and growth factors 

(20; 21), and altered composition of CSF has been shown to have a pathological effect on 

human brain development (18; 19). Future studies, perhaps in animal models of ASD, will 

need to be carried out to evaluate both the underlying causes of persistently increased EA-

CSF and the potential deleterious effects on brain development. While EA-CSF may have a 

pathogenic role in the etiology of ASD, it is also quite possible that increased EA-CSF is a 

marker of some other underlying process that may indicate a more general risk for altered 

neurodevelopment.

There has been recent emphasis placed on the importance of finding biological markers to 

aid in evaluating early risk for neurodevelopmental and other brain-based, behavioral 

disorders (46–48). A major obstacle in this pursuit is the lack of replication of putative 

biomarkers and/or small sample sizes (for review, see (49). The current study addressed both 

concerns, confirming the initial findings in an independent sample roughly seven times 

larger than the first sample. Reproducibility is rare in biomedical research (50), particularly 

in neuroscience (51) and autism (49). This study not only confirms findings in an 

independent sample, but it employed a different image acquisition protocol, multiple 

scanners and study sites, and different (automated) image analysis procedures. The results 

were strikingly similar across both studies, suggesting that the findings are robust. This view 

will be further supported if future studies on independent populations come to similar 

conclusions.

We developed a fully automated method to quantify EA-CSF volume, and the current 

findings suggest that increased EA-CSF is an observable brain anomaly that potentially 

could be quantified using different structural MRI platforms available to clinical 

radiologists. Future studies will determine how these quantitative measurements correspond 
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to qualitative ratings from radiological assessments (22). Before quantification of EA-CSF 

could be useful in a clinical setting, the sensitivity and specificity of predicting autism must 

be established. Increased EA-CSF volume at 6 months had 69% accuracy in predicting 

autism at 24 months. These prediction metrics were similar to those found in the out-of-

sample validation of the previous sample (1), which supports the predictive validity of this 

finding. However, the results of the prediction model are not yet strong enough as a stand-

alone marker to be clinically useful in predicting individual outcomes. Furthermore, the 

specificity of EA-CSF for ASD needs to be evaluated, as it is possible that extra-axial CSF 

may be a more general marker for altered neurodevelopment. Thus, future studies are needed 

to evaluate whether infants with other neurodevelopmental disorders also show increased 

EA-CSF during the first two years of life.

This study raises a number of questions that need to be addressed in order to evaluate what, 

if any, are the potential clinical implications of these findings. Is increased EA-CSF 

associated with ASD only in children at high familial risk, or would it be found more 

generally in other children who develop ASD? Is it specific to autism, or is it present in 

children who develop other neurodevelopmental disorders? What leads to increased EA-

CSF? Is it associated with immunological insults, and are there genetic underpinnings? The 

answers to these questions would contribute to decisions as to whether the presence of 

increased extra-axial CSF should be assessed and monitored routinely in infants at risk for 

ASD. Though the current clinical view is that early increased extra-axial CSF is commonly 

benign and without long-term consequences, this should be re-evaluated in infants at risk for 

ASD in light of the findings of this study and the predecessor study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are sincerely grateful to all the families and children who participated in the IBIS study.

†IBIS Network: The Infant Brain Imaging Study (IBIS) Network is an NIH funded Autism Center of Excellence 
project and consists of a consortium of 8 universities in the U.S. and Canada. Clinical Sites: University of North 
Carolina: J. Piven (IBIS Network PI), H.C. Hazlett, C. Chappell; University of Washington: S. Dager, A. Estes, D. 
Shaw; Washington University: K. Botteron, R. McKinstry, J. Constantino, J. Pruett; Children’s Hospital of 
Philadelphia: R. Schultz; University of Alberta: L. Zwaigenbaum; University of Minnesota: J. Elison; Data 
Coordinating Center: Montreal Neurological Institute: A.C. Evans, D.L. Collins, G.B. Pike, V. Fonov, P. 
Kostopoulos; S. Das; Image Processing Core: New York University: G. Gerig; University of North Carolina: M. 
Styner; Statistical Analysis Core: University of North Carolina: H. Gu.

Funding

This study was supported by grants from the National Institutes of Health (R01-HD055741, R01-HD05571-S1, 
R01-HD059854, T32-HD040127, U54HD086984), Autism Speaks, and the Simons Foundation (#140209). The 
funders had no role in study design, data collection, analysis, data interpretation, or writing of the report.

The sponsors had no role in the design and conduct of the study; collection, management, analysis, and 
interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript 
for publication.

Shen et al. Page 10

Biol Psychiatry. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations

ADOS Autism Diagnostic Observation Schedule

ADI-R Autism Diagnostic Interview -Revised

ASD autism spectrum disorder

AUC area under the receiver operating characteristic curve

EA-CSF extra-axial cerebrospinal fluid

HR high familial risk for ASD

HR-ASD high risk infants later diagnosed with ASD

HR-negative high risk infants who do not develop ASD

LR low familial risk for ASD

LR-negative low risk infants who do not develop ASD

LV lateral ventricles

ROC Receiver operating characteristic

TCV total cerebral volume
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Figure 1. Automated quantification of extra-axial CSF
T1- and T2-weighted images were acquired from each participant and used to segment the 

cerebrospinal fluid in the subarachnoid space between the dura and cortical surface, dorsal 

to the horizontal plane of the anterior-posterior commissure.
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Figure 2. Example brain images indicating the presence of increased extra-axial CSF
(A) T1-weighted coronal images of a low-risk infant with normal MRI at 6, 12, and 24 

months. (B) T1-weighted coronal images of a high-risk infant with increased extra-axial 

CSF at 6, 12, and 24 months. This child was diagnosed with ASD at 24 months.
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Figure 3. Infants later diagnosed with ASD had increased extra-axial CSF by 6 months, which 
remained significantly elevated through 24 months
Note: LS means are adjusted for covariates in model [age, sex, total cerebral volume, scan 

site]. Error bars = ±1 SEM. *p<0.005 vs. HR-negative and vs. LR-negative. Percent 

differences are in relation to the HR-negative group (Cohen’s d).
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Figure 4. ASD subgroup with more severe autism symptoms had a greater increase of extra-axial 
CSF throughout 6-24 months compared to all other groups
The ASD group was stratified into subgroups according to empirically derived categories on 

the ADOS. The ASD subgroup with more severe autism symptoms (HR-ASD-High) had a 

more pronounced increase in extra-axial CSF. Note: LS means are adjusted for covariates in 
model [age, sex, total cerebral volume, scan site]. Error bars = ±1 SEM. **p<0.0005 vs. HR-
negative and vs. LR-negative, p<0.05 vs. HR-ASD-Moderate. Percent differences are in 
relation to the HR-negative group (Cohen’s d).
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Figure 5. Extra-axial CSF is significantly correlated with poorer motor skills in the ASD group
Across the entire HR-ASD group, extra-axial CSF volume at 6 months of age was negatively 

correlated with motor scores at 6 months on the (A) direct examination Mullen gross motor 

subscale (standardized norm of M[SD] = 50[10]); and (B) parent-report Vineland motor 

subscale (standardized norm of M[SD] = 100[15]).
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Table 1

Participant characteristics by diagnostic outcome group

Mean (SD)

High Risk-ASD High Risk-Negative Low Risk-Negative Test statistica

N 47 174 122

Sex 42 M; 5 F 95 M; 79 F 76 M; 46 F X2(2)=21.94, p=1.72 × 10−5

Age at 1st MRI (mo.) 6.6 (.7) 6.6 (.7) 6.7 (.7) F2,340=0.57, p=.57

Age at 2nd MRI (mo.) 12.8 (.7) 12.6 (.6) 12.7 (.8) F2,251=2.14, p=.12

Age at 3rd MRI (mo.) 24.7 (.7) 24.8 (.9) 24.7 (.8) F2,204=0.35, p=.71

Mullen Early Learning Composite (at 
24 mos.)

77.8 (18.6) 102.6 (15.9) 109.8 (13.4) F2,204=46.05, p=3.13 × 10−17 2,204

ADOS Total (at 24 mos.) (Social 
Affect+RRB)

14.2 (5.5) 2.7 (2.3) 2.5 (2.3) F2,204=48.51, p=5.83 × 10−18 2,204

a
Test statistic, degrees of freedom, and p-value of omnibus ANOVA (Age, Mullen, ADOS) and Chi-square test (sex)
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Table 2

Number of MRI scans at each time point

No. of scans at each time point High-risk ASD High-Risk Negative Low-Risk Negative Total scans at each time point

6 months 47 174 122 343

12 months 31 134 89 254

24 months 32 111 64 207

Total N 110 419 275 804
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