927 research outputs found

    Classes of Measures Generated by Capacities

    Full text link
    We introduce classes of measures in the half-space R+n+1,\mathbf{R}^{n+1}_+, generated by Riesz, or Bessel, or Besov capacities in Rn\mathbf{R}^n, and give a geometric characterization as Carleson-type measures

    Performance of the Micromegas detector in the CAST experiment

    Full text link
    The gaseous Micromegas detector designed for the CERN Axion search experiment CAST, operated smoothly during Phase-I, which included the 2003 and 2004 running periods. It exhibited linear response in the energy range of interest (1-10keV), good spatial sensitivity and energy resolution (15-19% FWHM at 5.9keV)as well as remarkable stability. The detector's upgrade for the 2004 run, supported by the development of advanced offline analysis tools, improved the background rejection capability, leading to an average rate 5x10^-5 counts/sec/cm^2/keV with 94% cut efficiency. Also, the origin of the detected background was studied with a Monte Carlo simulation, using the GEANT4 package.Comment: Prepared for PSD7: The Seventh International Conference on Position Sensitive Detectors, Liverpool, United Kingdom, 12-16 Sep. 200

    Energy resolution of alpha particles in a microbulk Micromegas detector at high pressure Argon and Xenon mixtures

    Full text link
    The latest Micromesh Gas Amplification Structures (Micromegas) are achieving outstanding energy resolution for low energy photons, with values as low as 11% FWHM for the 5.9 keV line of 55^{55}Fe in argon/isobutane mixtures at atmospheric pressure. At higher energies (MeV scale), these measurements are more complicated due to the difficulty in confining the events in the chamber, although there is no fundamental reason why resolutions of 1% FWHM or below could not be reached. There is much motivation to demonstrate experimentally this fact in Xe mixtures due to the possible application of Micromegas readouts to the Double Beta Decay search of 136^{136}Xe, or in other experiments needing calorimetry and topology in the same detector. In this paper, we report on systematic measurements of energy resolution with state-of-the-art Micromegas using a 5.5 MeV alpha source in high pressure Ar/isobutane mixtures. Values as low as 1.8% FWHM have been obtained, with possible evidence that better resolutions are achievable. Similar measurements in Xe, of which a preliminary result is also shown here, are under progress.Comment: 16 pages, 19 figures, version after referees comments. Accepted for publication in Nuclear Instruments and Methods

    AKT regulates NPM dependent ARF localization and p53mut stability in tumors

    Get PDF
    Nucleophosmin (NPM) is known to regulate ARF subcellular localization and MDM2 activity in response to oncogenic stress, though the precise mechanism has remained elusive. Here we describe how NPM and ARF associate in the nucleoplasm to form a MDM2 inhibitory complex. We find that oligomerization of NPM drives nucleolar accumulation of ARF. Moreover, the formation of NPM and ARF oligomers antagonizes MDM2 association with the inhibitory complex, leading to activation of MDM2 E3-ligase activity and targeting of p53. We find that AKT phosphorylation of NPM-Ser48 prevents oligomerization that results in nucleoplasmic localization of ARF, constitutive MDM2 inhibition and stabilization of p53. We also show that ARF promotes p53 mutant stability in tumors and suppresses p73 mediated p21 expression and senescence. We demonstrate that AKT and PI3K inhibitors may be effective in treatment of therapeutically resistant tumors with elevated AKT and carrying gain of function mutations in p53. Our results show that the clinical candidate AKT inhibitor MK-2206 promotes ARF nucleolar localization, reduced p53(mut) stability and increased sensitivity to ionizing radiation in a xenograft model of pancreatic cancer. Analysis of human tumors indicates that phospho-S48-NPM may be a useful biomarker for monitoring AKT activity and in vivo efficacy of AKT inhibitor treatment. Critically, we propose that combination therapy involving PI3K-AKT inhibitors would benefit from a patient stratification rationale based on ARF and p53(mut) status

    Modelling the behaviour of microbulk Micromegas in Xenon/trimethylamine gas

    Get PDF
    We model the response of a state of the art micro-hole single-stage charge amplication device (`microbulk' Micromegas) in a gaseous atmosphere consisting of Xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 um-side equilateral-triangle pattern with 50 um-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 um-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made

    Cyan-Emitting Cu(I) Complexes and Their Luminescent Metallopolymers

    Get PDF
    Copper complexes have shown great versatility and a wide application range across the natural and life sciences, with a particular promise as organic light-emitting diodes. In this work, four novel heteroleptic Cu(I) complexes were designed in order to allow their integration in advanced materials such as metallopolymers. We herein present the synthesis and the electrochemical and photophysical characterisation of these Cu(I) complexes, in combination with ab initio calculations. The complexes present a bright cyan emission (λem ~ 505 nm) in their solid state, both as powder and as blends in a polymer matrix. The successful synthesis of metallopolymers embedding two of the novel complexes is shown. These copolymers were also found to be luminescent and their photophysical properties were compared to those of their polymer blends. The chemical nature of the polymer backbone contributes significantly to the photoluminescence quantum yield, paving a route for the strategic design of novel luminescent Cu(I)-based polymeric materials
    corecore