15 research outputs found

    Report on industrial user engagement

    Get PDF
    From the inception of the project, West-Life has kept focus on engaging with Industrial partners. Through partner interactions with Industrial collaborators and establishing new interactions by representations at Industrial participant events, the project has been endeavouring to spread the achievements of West-Life enabled tools and services. West-Life has also been interacting with industrial scientists and solutions providers to understand their needs from the structural biology solutions and services and in training early career/established structural biologists. During the remainder of the project, West-Life will enable users from Industrial research to understand and utilise tools and services provided through the project through concerted efforts on engagement including website, social media, conferences and networking

    CD80 (B7-1) Binds Both CD28 and CTLA-4 with a Low Affinity and Very Fast Kinetics

    Get PDF
    The structurally related T cell surface molecules CD28 and CTLA-4 interact with cell surface ligands CD80 (B7-1) and CD86 (B7-2) on antigen-presenting cells (APC) and modulate T cell antigen recognition. Preliminary reports have suggested that CD80 binds CTLA-4 and CD28 with affinities (Kd values ∌12 and ∌200 nM, respectively) that are high when compared with other molecular interactions that contribute to T cell–APC recognition. In the present study, we use surface plasmon resonance to measure the affinity and kinetics of CD80 binding to CD28 and CTLA-4. At 37°C, soluble recombinant CD80 bound to CTLA-4 and CD28 with Kd values of 0.42 and 4 ÎŒM, respectively. Kinetic analysis indicated that these low affinities were the result of very fast dissociation rate constants (koff); sCD80 dissociated from CD28 and CTLA-4 with koff values of â©Ÿ1.6 and â©Ÿ0.43 s−1, respectively. Such rapid binding kinetics have also been reported for the T cell adhesion molecule CD2 and may be necessary to accommodate dynamic T cell–APC contacts and to facilitate scanning of APC for antigen

    Automation of large scale transient protein expression in mammalian cells

    Get PDF
    Traditional mammalian expression systems rely on the time-consuming generation of stable cell lines; this is difficult to accommodate within a modern structural biology pipeline. Transient transfections are a fast, cost-effective solution, but require skilled cell culture scientists, making man-power a limiting factor in a setting where numerous samples are processed in parallel. Here we report a strategy employing a customised CompacT SelecT cell culture robot allowing the large-scale expression of multiple protein constructs in a transient format. Successful protocols have been designed for automated transient transfection of human embryonic kidney (HEK) 293T and 293S GnTI⁻ cells in various flask formats. Protein yields obtained by this method were similar to those produced manually, with the added benefit of reproducibility, regardless of user. Automation of cell maintenance and transient transfection allows the expression of high quality recombinant protein in a completely sterile environment with limited support from a cell culture scientist. The reduction in human input has the added benefit of enabling continuous cell maintenance and protein production, features of particular importance to structural biology laboratories, which typically use large quantities of pure recombinant proteins, and often require rapid characterisation of a series of modified constructs. This automated method for large scale transient transfection is now offered as a Europe-wide service via the P-cube initiative

    West-Life: A Virtual Research Environment for structural biology

    Get PDF
    The West-Life project (https://about.west-life.eu/)is a Horizon 2020 project funded by the European Commission to provide data processing and data management services for the international community of structural biologists, and in particular to support integrative experimental approaches within the field of structural biology. It has developed enhancements to existing web services for structure solution and analysis, created new pipelines to link these services into more complex higher-level workflows, and added new data management facilities. Through this work it has striven to make the benefits of European e-Infrastructures more accessible to life-science researchers in general and structural biologists in particular

    West-Life Sustainability Report Work Plan

    No full text
    <p>This milestone paper presents a plan of action to allow the production of a sustainability report for deliverable D1.5. The paper outlines the data collection to allow appropriate assessment of the sustainability of the services provided by West-Life and actions for the provision of the services required by the structural biology community beyond the lifetime of the project. In section 2, sustainability is discussed with particular reference to sustainability aims for e-Infrastructures. In section 3, the plans for data collection and data sources available for sustainability assessment are outlined. Section 4 explains how the data collected will allow the assessment of how each West-Life service, and ultimately inform decisions on sustainability actions. Finally, the work plan towards the project-end deliverable D1.5 Sustainability Report is detailed in section 5.</p

    Functional conservation of HTLV-1 Rex balances the immune pressure for sequence variation in the Rex gene

    Get PDF
    Naturally occurring mutations in Human T-cell Leukemia Virus Type 1 (HTLV-1) Tax protein lead to loss of recognition by cytotoxic T-lymphocytes. Most of these mutations also abolish or severely impair the transactivation function of Tax. Ninety percent of the Rex gene, which encodes the viral regulator of mRNA splicing (Rex), overlaps with theTax gene. In this paper, we report that four previously described point mutations in Tax that abolished CTL recognition and activity did not alter either the dimerisation function or the ability to export viral mRNA of the corresponding Rex proteins. Rex proteins containing two other amino acid changes were likewise functional. However, five Rex deletion mutants, predominantly but not exclusively found in HAM/TSP patients, had all lost these functions. We conclude that, although the Tax protein is subject to strong CTL-mediated selection, there are stronger functional constraints on amino acid variation in Rex. This may limit the variation in the Tax/Rex nucleotide sequence which results in immune evasion

    Human T-Cell Leukemia Virus Type 1 Tax Protein Binds to Assembled Nuclear Proteasomes and Enhances Their Proteolytic Activity

    No full text
    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates the HTLV-1 long terminal repeat and key regulatory proteins involved in inflammation, activation, and proliferation and may induce cell transformation. Tax is also the immunodominant target antigen for cytotoxic T cells in HTLV-1 infection. We found that Tax bound to assembled nuclear proteasomes, but Tax could not be detected in the cytoplasm. Confocal microscopy revealed a partial colocalization of Tax with nuclear proteasomes. As Tax translocated into the nucleus very quickly after synthesis, this process probably takes place prior to and independent of proteasome association. Tax mutants revealed that both the Tax N and C termini play a role in proteasome binding. We also found that proteasomes from Tax-transfected cells had enhanced proteolytic activity on prototypic peptide substrates. This effect was not due to the induction of the LMP2 and LMP7 proteasome subunits. Furthermore, Tax appeared to be a long-lived protein, with a half-life of around 15 h. These data suggest that the association of Tax with the proteasome and the enhanced proteolytic activity do not target Tax for rapid degradation and may not determine its immunodominance

    Recording information on protein complexes in an information management system

    No full text
    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described
    corecore