35 research outputs found

    Radiation Environment In Earth-Moon Space: Results From RADOM Experiment Onboard Chandrayaan-1

    Full text link
    The Radiation Monitor (RADOM) payload is a miniature dosimeter-spectrometer onboard Chandrayaan-1 mission for monitoring the local radiation environment in near-Earth space and in lunar space. RADOM measured the total absorbed dose and spectrum of the deposited energy from high energy particles in near-Earth space, en-route and in lunar orbit. RADOM was the first experiment to be switched on soon after the launch of Chandrayaan-1 and was operational till the end of the mission. This paper summarizes the observations carried out by RADOM during the entire life time of the Chandrayaan-1 mission and some the salient results.Comment: Accepted for publication in Advances in Geoscience

    Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code

    Get PDF
    The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    On-board aircrew dosimetry using a semiconductor spectrometer

    No full text
    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise these fields. The spectrometer has been in use since spring 2000 on more than 130 return flights to monitor and characterise the on-board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level event, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (7 refs)

    Letter to the Editor

    No full text
    EXPOSE-R2 cosmic radiation time profile (Preliminary results) The aim of the letter is to present the preliminary time profile of cosmic radiation exposure obtained by the Radiation Risks Radiometer–Dosimeter (R3DR2) in the EXPOSE-R2 facility outside the Russian Zvezda module of the International Space Station (ISS) for the period 23 October 2014–11 January 2016. Another aim is to make the obtained results available to other EXPOSE-R2 team members for use in their biological data analysis

    Publicly available database of measurements with the silicon spectrometer Liulin onboard aircraft

    No full text
    Aircrew members are exposed to ionizing radiation due to their work onboard aircraft. ICRP recommended the monitoring of their effective doses because they regularly exceed the limit of 1 mSv per year for the public exposure. The effective doses are routinely calculated by computer codes that take into account flight parameters like altitude, geographic position, and solar activity. This approach was preferred against personal dosimeters method because the effective dose cannot be evaluated experimentally. However, it is generally accepted, that these calculations should be periodically verified by measurements of H*(10) which is frequently used as a surrogate for effective dose. This report refers about the database (available online http://hroch.ujf.cas.cz/ similar to aircraft/) of long-term measurements with the silicon spectrometer Liulin onboard aircraft. The measurements have been performed since March 2001; so up to date, the database covers a period of 11-years (with a few interruptions) which is usually the duration of the whole solar cycle. The database comprises more than 10(5) individual records of energy deposition spectra, absorbed dose rates, and ambient dose equivalent rates. Each record contains also the information on all flight parameters needed for calculation of dosimetric quantities by the computer codes, and thus the database represent an useful tool for verification of the routine dosimetry of aircraft crews. (C) 2013 Elsevier Ltd. All rights reserved

    Letter to the Editor

    No full text
    corecore