7 research outputs found
A Glycoconjugate Vaccine for Neisseria meningitidis Induces Antibodies in Human Infants That Afford Protection against Meningococcal Bacteremia in a Neonate Rat Challenge Model
The functional activities of serum samples from human infants immunized with a glycoconjugate vaccine for Neisseria meningitidis serogroup C were assessed in a complement-mediated antibody-dependent serum bactericidal assay (SBA) and in a neonate rat model of protection from bacteremia. Selective serum samples from individual human infants were combined to make a panel of 11 serum pools to obtain a sufficient volume for testing. Each pool was assayed (i) for the anti-N. meningitidis serogroup C capsular polysaccharide (PS) immunoglobulin G (IgG) concentration as determined by reactivity in a direct-binding enzyme-linked immunosorbent assay, (ii) for bactericidal activity against N. meningitidis serogroup C strain C11, and (iii) for the ability to reduce bacteremia after passive transfer into a neonate rat model. Representative serum samples from infants who were not previously immunized with any N. meningitidis serogroup C vaccine served as a negative control. The prepared serum pools ranged in antibody concentration from 0.18 to 17.31 μg of IgG specific for N. meningitidis serogroup C PS per ml. For this serum panel, a direct relationship between concentrations of anti-N. meningitidis serogroup C PS-specific IgG and serum SBA titers (r = 0.9960) was observed. Passive transfer to neonate rats demonstrated the ability of postimmunization serum samples to significantly reduce (≥2-log(10) reduction compared to control animals) the level of bacteremia following a challenge. Of 79 neonate rats that received ≥0.031 μg of human infant anti-N. meningitidis serogroup C PS IgG, 75 (94.9%) had a ≥2-log(10) reduction in bacteremia, whereas of the animals that received <0.031 μg of antigen-specific IgG, 10.3% (4 of 39 rats) showed a ≥2-log(10) reduction in bacteremia. It was concluded that the anti-N. meningitidis serogroup C PS IgG antibody induced by this glycoconjugate vaccine had in vitro functional activity (as determined by a SBA) and also afforded protection against meningococcal bacteremia in an animal model
Approach to Validating an Opsonophagocytic Assay for Streptococcus pneumoniae
Streptococcus pneumoniae (pneumococcus) polysaccharide serotype-specific antibodies that have opsonophagocytic activity are considered a primary mechanism of host defense against pneumococcal disease. In vitro opsonophagocytic assays (OPAs) with antibody and complement to mediate opsonophagocytic killing of bacteria have been designed and developed as an adjunct to the standardized serum immunoglobulin G antipneumococcal capsular polysaccharide enzyme immunoassay to assess the effectiveness of pneumococcal vaccines. OPA presents challenges for assay standardization and assay precision due to the multiple biologically active and labile components involved in the assay, including human polymorphonuclear leukocytes or cultured effector cells, bacteria, and complement. Control of these biologically labile components is critical for consistent assay performance. An approach to validating the performance of the assay in accordance with International Conference for Harmonization guidelines, including its specificity, intermediate precision, accuracy, linearity, and robustness, is presented. Furthermore, we established parameters for universal reagents and standardization of the use of these reagents to ensure the interlaboratory reproducibility and validation of new methodologies