13,894 research outputs found
An improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams
Taking into account more accurately the isospin dependence of nucleon-nucleon
interactions in the in-medium many-body force term of the Gogny effective
interaction, new expressions for the single nucleon potential and the symmetry
energy are derived. Effects of both the spin(isospin) and the density
dependence of nuclear effective interactions on the symmetry potential and the
symmetry energy are examined. It is shown that they both play a crucial role in
determining the symmetry potential and the symmetry energy at supra-saturation
densities. The improved single nucleon potential will be useful for simulating
more accurately nuclear reactions induced by rare isotope beams within
transport models.Comment: 6 pages including 6 figures
On Spinors Transformations
We begin showing that for even dimensional vector spaces all
automorphisms of their Clifford algebras are inner. So all orthogonal
transformations of are restrictions to of inner automorphisms of the
algebra. Thus under orthogonal transformations and - space and time
reversal - all algebra elements, including vectors and spinors ,
transform as and for some
algebra element . We show that while under combined spinor remain in its spinor space, under or separately
goes to a 'different' spinor space and may have opposite chirality.
We conclude with a preliminary characterization of inner automorphisms with
respect to their property to change, or not, spinor spaces.Comment: Minor changes to propositions 1 and
Direct Graphene Growth on Insulator
Fabrication of graphene devices is often hindered by incompatibility between
the silicon technology and the methods of graphene growth. Exfoliation from
graphite yields excellent films but is good mainly for research. Graphene grown
on metal has a technological potential but requires mechanical transfer. Growth
by SiC decomposition requires a temperature budget exceeding the technological
limits. These issues could be circumvented by growing graphene directly on
insulator, implying Van der Waals growth. During growth, the insulator acts as
a support defining the growth plane. In the device, it insulates graphene from
the Si substrate. We demonstrate planar growth of graphene on mica surface.
This was achieved by molecular beam deposition above 600{\deg}C. High
resolution Raman scans illustrate the effect of growth parameters and substrate
topography on the film perfection. Ab initio calculations suggest a growth
model. Data analysis highlights the competition between nucleation at surface
steps and flat surface. As a proof of concept, we show the evidence of electric
field effect in a transistor with a directly grown channel.Comment: 13 pages, 6 figure
The Dirac operator on SU_q(2)
We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum
group SU_q(2) which is equivariant with respect to a left and a right action of
U_q(su(2)). The geometry is isospectral to the classical case since the
spectrum of the operator D is the same as that of the usual Dirac operator on
the 3-dimensional round sphere. The presence of an equivariant real structure J
demands a modification in the axiomatic framework of spectral geometry, whereby
the commutant and first-order properties need be satisfied only modulo
infinitesimals of arbitrary high order.Comment: v2: minor changes; to appear in CM
Doping of graphene by a Au(111) substrate: Calculation strategy within the local density approximation and a semiempirical van der Waals approach
We have performed a density functional study of graphene adsorbed on Au(111)
surface using both a local density approximation and a semiempirical van der
Waals approach proposed by Grimme, known as the DFT-D2 method. Graphene
physisorbed on metal has the linear dispersion preserved in the band-structure,
but the Fermi level of the system is shifted with respect to the conical points
which results in a doping effect. We show that the type and amount of doping
depends not only on the choice of the exchange-correlation functional used in
the calculations, but also on the supercell geometry that models the physical
system. We analyzed how the factors such as the in-plane cell parameter and
interlayer spacing in gold influence the Fermi level shift and we found that
even a small variation in these parameters may cause a transition from p-type
to n-type doping. We have selected a reasonable set of model parameters and
obtained that graphene is either undoped or at most slightly p-type doped on
the clean Au(111) surface, which seems to be in line with experimental
findings. On the other hand, modifications of the substrate lattice may induce
larger doping up to 0.30-0.40 eV depending on the graphene-metal adsorption
distance. The sensitivity of the graphene-gold interface to the structural
parameters may allow to tune doping across the samples which could lead to
possible applications in graphene-based electronic devices. We believe that the
present remarks can be also useful for other studies based on the periodic DFT
Tuning of magnetic and electronic states by control of oxygen content in lanthanum strontium cobaltites
We report on the magnetic, resistive, and structural studies of perovskite
LaSrCoO. By using the relation of synthesis
temperature and oxygen partial pressure to oxygen stoichiometry obtained from
thermogravimetric analysis, we have synthesized a series of samples with
precisely controlled . These samples show three structural
phases at , , , and two-phase
behavior for other oxygen contents. The stoichiometric material with
is a cubic ferromagnetic metal with the Curie temperature K. The increase of to 0.15 is followed by a linear decrease of
to 160 K and a metal-insulator transition near the
boundary of the cubic structure range. Further increase of results in
formation of a tetragonal phase for
and a brownmillerite phase for . At low
temperatures, these are weak ferromagnetic insulators (canted antiferromagnets)
with magnetic transitions at and 120 K, respectively. At
higher temperatures, the phase is -type
antiferromagnetic between 230 K and 360 K. Low temperature magnetic
properties of this system for can be described in terms of a
mixture of Co ions in the low-spin state and Co ions in the
intermediate-spin state and a possible spin transition of Co to the
intermediate-spin state above . For , there appears to
be a combination of Co and Co ions, both in the high-spin state
with dominating antiferromagnetic interactions.Comment: RevTeX, 9 pages, 7 figures, to be published in Physical Review
Determination of the X-ray reflection emissivity profile of 1H 0707-495
When considering the X-ray spectrum resulting from the reflection off the
surface of accretion discs of AGN, it is necessary to account for the variation
in reflected flux over the disc, i.e. the emissivity profile. This will depend
on factors including the location and geometry of the X-ray source and the disc
characteristics. We directly obtain the emissivity profile of the disc from the
observed spectrum by considering the reflection component as the sum of
contributions from successive radii in the disc and fitting to find the
relative weightings of these components in a relativistically-broadened
emission line. This method has successfully recovered known emissivity profiles
from synthetic spectra and is applied to XMM-Newton spectra of the Narrow Line
Seyfert 1 galaxy 1H 0707-495. The data imply a twice-broken power law form of
the emissivity law with a steep profile in the inner regions of the disc (index
7.8) and then a flat region between 5.6rg and 34.8rg before tending to a
constant index of 3.3 over the outer regions of the disc. The form of the
observed emissivity profile is consistent with theoretical predictions, thus
reinforcing the reflection interpretation.Comment: 9 pages, 10 figures. Accepted for publication in MNRA
Local index formula for SU_q(2)
We discuss the local index formula of Connes-Moscovici for the isospectral
noncommutative geometry that we have recently constructed on quantum SU(2). We
work out the cosphere bundle and the dimension spectrum as well as the local
cyclic cocycles yielding the index formula.Comment: 18 pages. v2: minor changes; to appear in K-theor
Raman Response of Magnetic Excitations in Cuprate Ladders and Planes
An unified picture for the Raman response of magnetic excitations in cuprate
spin-ladder compounds is obtained by comparing calculated two-triplon Raman
line-shapes with those of the prototypical compounds SrCu2O3 (Sr123),
Sr14Cu24O41 (Sr14), and La6Ca8Cu24O41 (La6Ca8). The theoretical model for the
two-leg ladder contains Heisenberg exchange couplings J_parallel and J_perp
plus an additional four-spin interaction J_cyc. Within this model Sr123 and
Sr14 can be described by x:=J_parallel/J_perp=1.5, x_cyc:=J_cyc/J_perp=0.2,
J_perp^Sr123=1130 cm^-1 and J_perp^Sr14=1080 cm^-1. The couplings found for
La6Ca8 are x=1.2, x_cyc=0.2, and J_perp^La6Ca8=1130 cm^-1. The unexpected sharp
two-triplon peak in the ladder materials compared to the undoped
two-dimensional cuprates can be traced back to the anisotropy of the magnetic
exchange in rung and leg direction. With the results obtained for the isotropic
ladder we calculate the Raman line-shape of a two-dimensional square lattice
using a toy model consisting of a vertical and a horizontal ladder. A direct
comparison of these results with Raman experiments for the two-dimensional
cuprates R2CuO4 (R=La,Nd), Sr2CuO2Cl2, and YBa2Cu3O(6+delta) yields a good
agreement for the dominating two-triplon peak. We conclude that short range
quantum fluctuations are dominating the magnetic Raman response in both,
ladders and planes. We discuss possible scenarios responsible for the
high-energy spectral weight of the Raman line-shape, i.e. phonons, the
triple-resonance and multi-particle contributions.Comment: 10 pages, 6 figure
A Graphene-based Hot Electron Transistor
We experimentally demonstrate DC functionality of graphene-based hot electron
transistors, which we call Graphene Base Transistors (GBT). The fabrication
scheme is potentially compatible with silicon technology and can be carried out
at the wafer scale with standard silicon technology. The state of the GBTs can
be switched by a potential applied to the transistor base, which is made of
graphene. Transfer characteristics of the GBTs show ON/OFF current ratios
exceeding 50.000.Comment: 18 pages, 6 figure
- …
