72 research outputs found

    Influence du sol sur l'infestation de Meloidogyne javanica (Treub, 1885) Chitwood, 1949 (Nematoda) par l'actinomycète parasitoïde Pasteuria penetrans (Thorne, 1940 ) Sayre & Starr, 1985

    Get PDF
    Des études menées dans un champ naturellement infesté par #Meloidogyne javanica et #Pasteuria penetrans ont montré par des analyses multivariées (ACP, Classification Hiéarchique Ascendante, AFD, Analyse de Correspondance) que les facteurs telluriques abiotiques influencent la distribution parcellaire des populations des deux organismes et que le niveau d'infestation des juvéniles de #M. javanica n'est pas seulement soumis au phénomène de densité-dépendance. En effet, certains facteurs telluriques notamment l'irrigtion, la texture, la structure du sol (particulièrement la porosité et la capacité de rétention en eau), et la fraction ionique sont corrélés au taux d'infestation et d'encombrement des juvéniles de #M. javanica ainsi qu'à la densité des populations de #P. penetransdanslesol.Enfait,uneirrigationintensediminueletauxdinfestationetdencombrementdesjuveˊnilesdeM.javanica dans le sol. En fait, une irrigation intense diminue le taux d'infestation et d'encombrement des juvéniles de M. javanica par les spores de #P. prenetrans. En outre, une étude en serre a révélé qu'une forte irrigation provoque un transport vertical important des spores réduisant ainsi le stock de #P. penetrans dans les couches arables (horizon A). Elle provoque aussi une modification de la structure du sol consécutive au lessivage de la fraction fine (surtout au niveau rhizosphérique). Alors qu'une augmentation de la teneur en d'argile améliore la porosité des sols (en particulier sableux), une concentration en argile trop élevée inhiberait l'attachement des spores sur la cuticule des juvéniles. Les particules d'argile se fixeraient sur la paroi de la spore empêchant son adhésion sur les juvéniles laquelle adhésion serait de nature électrostatique ou hydrophobique. Par ailleurs, l'hétérogénéité structurale du sol est un facteur déterminant dans le contrôle des populations de #M. javanica$. En effet, l'interconnectivité des pores semble être une condition primordiale pour un contact entre les deux organismes... (D'après résumé d'auteur

    Larval habitat segregation between the molecular forms of the African Malaria mosquito, Anopheles gambiae in a rice field area of Burkina Faso, West Africa

    Get PDF
    In West Africa, lineage splitting between the M and S molecular forms of the major Afro-tropical malaria mosquito, Anopheles gambiae (Diptera: Culicidae), is thought to be driven by ecological divergence, occurring mainly at the larval stage. Here, we present evidence for habitat segregation between the two molecular forms in and around irrigated rice fields located within the humid savannahs of western Burkina Faso. Longitudinal sampling of adult mosquitoes emerging from a range of breeding sites distributed along a transect extending from the heart of the rice field area into the surrounding savannah was conducted from June to November 2009. Analysis revealed that the two molecular forms and their sibling species Anopheles arabiensis are not randomly distributed in the area. A major ecological gradient was extracted in relation to the perimeter of the rice fields. The M form was associated with larger breeding sites mostly consisting of rice paddies, whereas the S form and An. arabiensis were found to depend upon temporary, rain-filled breeding sites. These results support hypotheses about larval habitat segregation and confirm the suggestion that the forms have different larval habitat requirements. Segregation appears to be clearly linked to anthropogenic permanent habitats and the community structure they support. (Résumé d'auteur

    Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes

    Get PDF
    Background: Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso. Methodology/Principal Findings: We used a Y tube-olfactometer designed to take advantage of the whole body odour (breath and skin emanations) as a stimulus to gauge human attractiveness to Anopheles gambiae (the primary African malaria vector) before and after volunteers consumed either beer (n = 25 volunteers and a total of 2500 mosquitoes tested) or water (n = 18 volunteers and a total of 1800 mosquitoes). Water consumption had no effect on human attractiveness to An. gambiae mosquitoes, but beer consumption increased volunteer attractiveness. Body odours of volunteers who consumed beer increased mosquito activation (proportion of mosquitoes engaging in take-off and up-wind flight) and orientation (proportion of mosquitoes flying towards volunteers' odours). The level of exhaled carbon dioxide and body temperature had no effect on human attractiveness to mosquitoes. Despite individual volunteer variation, beer consumption consistently increased attractiveness to mosquitoes. Conclusions/Significance: These results suggest that beer consumption is a risk factor for malaria and needs to be integrated into public health policies for the design of control measures

    Insecticide resistance profiles of Anopheles gambiae s.l. in Togo and genetic mechanisms involved, during 3-year survey: Is there any need for resistance management?

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background Malaria, one of the world’s greatest public health challenges, is an endemic disease with stable transmission in Togo. Combating malaria requires an effective vector control. This study provides temporal data on insecticide resistance status in the major malaria vector Anopheles gambiae sensu lato (s.l.) from Togo. Methods Two to 5 days old females of An. gambiae s.l., originating from three localities (Baguida, Kovié, Kolokopé) were subjected to insecticide-impregnated papers during 3 years (2012, 2013, 2016) as follows: organochlorides (4% DDT), pyrethroids (0.05% deltamethrin, 0.75% permethrin, 0.05% lambdacyhalothrin), carbamates (0.4% bendiocarb and 0.1% propoxur), and organophosphates (5% malathion, 0.4% chlorpyrifos methyl, 1% fenitrothion) following the WHO standard protocol. Dead and surviving mosquitoes were stored separately in Eppendorf tubes containing silica gel for DNA extraction, species identification, and kdr and ace-1 genotyping. Results Knockdown times (KDT50 and KDT95) were high in An. gambiae s.l. The lowest KDTs were recorded at Baguida in 2013 for deltamethrin (KDT50 = 24.7, CI [22.4–27.12] and KDT95 = 90.78, CI [76.35–113.49]). No KDTs were recorded for DDT and in some instances for permethrin. In general, An. gambiae s.l. was resistant to most of the four classes of insecticides during the survey periods regardless of locality and year, except to chlorpyrifos methyl. In some instances, mosquitoes were fully susceptible to fenitrothion (Kolokopé: 100% and Kovié: 98.05%, CI [95.82–100.26]) and malathion (100% at both Kolokopé and Kovié) in 2013, and malathion only (Kolokopé; 100%) in 2016. Anopheles coluzzii, An. gambiae and Anopheles arabiensis were the three sibling species identified at the three localities with some hybrids at Baguida (2013), and Kovié (2012 and 2016), respectively. Anopheles gambiae was relatively dominant (61.6%). The kdr 1014F allele frequency was > 0.9 in most of the cases, except at Kolokopé (f (1014F) = 0.63, CI [0.55–0.71]) in 2013. The kdr 1014S allele frequency was below 0.02. The highest ace-1 frequencies were identified in An. gambiae at Baguida (2012: 0.52, CI [0.34–0.69] and 2013: 0.66, CI [0.46–0.86]). Conclusion The resistance status is worrying in Togo and should be considered in future malaria vector resistance management programmes by decision-makers.Organization for Women in Science for the Developing Worl

    West African Anopheles Gambiae Mosquitoes Harbor a Taxonomically Diverse Virome Including New Insect-Specific Flaviviruses, Mononegaviruses, and Totiviruses

    Get PDF
    Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission

    A non-destructive sugar-feeding assay for parasite detection and estimating the extrinsic incubation period of Plasmodium falciparum in individual mosquito vectors

    Get PDF
    Despite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium–Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time. This technique has been tested across four natural malaria mosquito species of Africa and Asia, infected with Plasmodium falciparum (six field isolates from gametocyte-infected patients in Burkina Faso and the NF54 strain) and across a range of temperatures relevant to malaria transmission in field conditions. Monitoring individual infectious mosquitoes was feasible. The estimated median EIP of P. falciparum at 27 °C was 11 to 14 days depending on mosquito species and parasite isolate. Long-term individual tracking revealed that sporozoites transfer onto cotton wool can occur at least until day 40 post-infection. Short individual EIP were associated with short mosquito lifespan. Correlations between mosquito/parasite traits often reveal trade-offs and constraints and have important implications for understanding the evolution of parasite transmission strategies

    Surveys of Arboviruses Vectors in Four Cities Stretching Along a Railway Transect of Burkina Faso: Risk Transmission and Insecticide Susceptibility Status of Potential Vectors

    Get PDF
    Background: A severe outbreak of dengue occurred in Burkina Faso in 2016, with the most cases reported in Ouagadougou, that highlights the necessity to implement vector surveillance system. This study aims to estimate the risk of arboviruses transmission and the insecticide susceptibility status of potential vectors in four sites in Burkina Faso.Methods: From June to September 2016, house-to-house cross sectional entomological surveys were performed in four cities stretching along a southwest-to-northeast railway transect. The household surveys analyzed the presence of Aedes spp. larvae in containers holding water and the World Health Organization (WHO) larval abundance indices were estimated. WHO tube assays was used to evaluate the insecticide susceptibility within Aedes populations from these localities.Results: A total of 31,378 mosquitoes' larvae were collected from 1,330 containers holding water. Aedes spp. was the most abundant (95.19%) followed by Culex spp. (4.75%). Aedes aegypti a key vector of arboviruses (ARBOV) in West Africa was the major Aedes species found (98.60%). The relative larval indices, house index, container and Breteau indexes were high, up to 70, 35, and 10, respectively. Aedes aegypti tended to breed mainly in discarded tires and terracotta jars. Except in Banfora the western city, Ae. aegypti populations were resistant to deltamethrin 0.05% in the other localities with low mortality rate under 20% in Ouagadougou whereas they were fully susceptible to malathion 5% whatever the site. Intermediate resistance was observed in the four sites with mortality rates varying between 78 and 94% with bendiocarb 0.1%.Conclusions: This study provided basic information on entomological indices that can help to monitor the risks of ARBOV epidemics in the main cities along the railway in Burkina Faso. In these cities, all larval indices exceeded the risk level of ARBOV outbreak. Aedes aegypti the main species collected was resistant to deltamethrin 0.05% and bendiocarb 0.1% whereas they were fully susceptible to malathion 5%. The monitoring of insecticide resistance is also important to be integrated to the vector surveillance system in Burkina Faso

    Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of insecticide-treated nets (ITN) is an important tool in the Roll Back Malaria (RBM) strategy. For ITNs to be effective they need to be used correctly. Previous studies have shown that many factors, such as wealth, access to health care, education, ethnicity and gender, determine the ownership and use of ITNs. Some studies showed that free distribution and public awareness campaigns increased the rate of use. However, there have been no evaluations of the short- and long-term impact of such motivation campaigns. A study carried out in a malaria endemic area in south-western Burkina Faso indicated that this increased use declined after several months. The reasons were a combination of the community representation of malaria, the perception of the effectiveness and usefulness of ITNs and also the manner in which households are organized by day and by night.</p> <p>Methods</p> <p>PermaNet 2.0<sup>® </sup>and Olyset<sup>® </sup>were distributed in 455 compounds at the beginning of the rainy season. The community was educated on the effectiveness of nets in reducing malaria and on how to use them. To assess motivation, qualitative tools were used: one hundred people were interviewed, two hundred houses were observed directly and two houses were monitored monthly throughout one year.</p> <p>Results</p> <p>The motivation for the use of bednets decreased after less than a year. Inhabitants' conception of malaria and the inconvenience of using bednets in small houses were the major reasons. Acceptance that ITNs were useful in reducing malaria was moderated by the fact that mosquitoes were considered to be only one of several factors which caused malaria. The appropriate and routine use of ITNs was adversely affected by the functional organization of the houses, which changed as between day and night. Bednets were not used when the perceived benefits of reduction in mosquito nuisance and of malaria were considered not to be worth the inconvenience of daily use.</p> <p>Conclusion</p> <p>In order to bridge the gap between possession and use of bednets, concerted efforts are required to change behaviour by providing accurate information, most particularly by convincing people that mosquitoes are the only source of malaria, whilst recognising that there are other diseases with similar symptoms, caused in other ways. The medical message must underline the seriousness of malaria and the presence of the malaria vector in the dry season as well as the wet, in order to encourage the use of bednets whenever transmission can occur. Communities would benefit from impregnated bednets and other vector control measures being better adapted to their homes, thus reducing the inconvenience of their use.</p
    corecore