7 research outputs found

    Powder Compaction: Compression Properties of Cellulose Ethers

    Get PDF
    Effective development of matrix tablets requires a comprehensive understanding of different raw material attributes and their impact on process parameters. Cellulose ethers (CE) are the most commonly used pharmaceutical excipients in the fabrication of hydrophilic matrices. The innate good compression and binding properties of CE enable matrices to be prepared using economical direct compression (DC) techniques. However, DC is sensitive to raw material attributes, thus, impacting the compaction process. This article critically reviews prior knowledge on the mechanism of powder compaction and the compression properties of cellulose ethers, giving timely insight into new developments in this field

    Experimental and Theoretical Determination of the Magnetic Susceptibility of C60 and C70

    No full text
    THE magnetic susceptibility of C60 and the possibility of magnetic-field-induced π-electron ring currents in this carbon spheroid have been of interest since the initial experiments on carbon clusters1. If the molecule is regarded as a sphere with a radius of 3.5 Å, on which 60 electrons are free to move, the Pauling ring-current model predicts a ring-current diamagnetic susceptibility 41 times the π-electron ring-current magnetic susceptibility of benzene with the field normal to the plane of the six-membered ring2,3. London theory predicts, however, that the π-electron ring currents in C60 should be weakly paramagnetic or diamagnetic, depending on the relative bond strengths used in the calculation2,3. With the availability of macroscopic quantities of C60 (ref. 4), it is now possible to study experimentally the magnetic properties of the molecule. Here we report on such measurements. We find that the diamagnetism of C60 is small, a result that we attribute to excited-state paramagnetic contributions to the π-electron ring-current magnetic susceptibility. Thus C60 seems to be an aromatic molecule with a vanishingly small π-electron ring-current magnetic susceptibility. We have performed similar measurements on C70, which indicate an appreciable π-electron diamagnetism, consistent with theoretical calculations. We attribute the differences in magnetic properties of these two molecules to their different fractions of five-membered ring structures. The fullerenes may thus constitute a class of compounds of \u27ambiguous\u27 aromatic character, traditional measures of which will not provide an adequate classification

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text
    corecore