262 research outputs found

    Writing Reality: Constructivism, Metaphor, and Cosmology

    Get PDF
    Two philosophies of metaphor are contrasted in constructing discourse and reality

    No evidence of transmission of grapevine leafroll-associated viruses by phylloxera (Daktulosphaira vitifoliae).

    Get PDF
    Grapevine leafroll disease is associated with several species of phloem-limited grapevine leafrollassociated viruses (GLRaV), some of which are transmitted by mealybugs and scale insects. The grape phylloxera, Daktulosphaira vitifoliae (Fitch) Biotype A (Hemiptera: Phylloxeridae), is a common vineyard pest that feeds on the phloem of vine roots. There is concern that these insects may transmit one or more GLRaV species, particularly GLRaV-2, a species in the genus Closterovirus. A field survey was performed in vineyards with a high incidence of grapevine leafroll disease and D. vitifoliae was assessed for acquisition of GLRaV. In greenhouse experiments, the ability of D. vitifoliae to transmit GLRaV from infected root sections or vines to co-planted virus-free recipient vines was tested. There were no GLRaV-positive D. vitifoliae in the field survey, nor did D. vitifoliae transmit GLRaV- 1, ?2, ?3, or -4LV in greenhouse transmission experiments. Some insects tested positive for GLRaV after feeding on infected source vines in the greenhouse, however there was no evidence of virus transmission to healthy plants. These findings, in combination with the sedentary behaviour of the soil biotype of D. vitifoliae, make it unlikely that D. vitifoliae is a vector of any GLRaV.DOI: 10.1007/s10658-016-1049-

    Studies on the preparation, properties and analysis of high purity yttrium oxide and yttrium metal at the Ames Laboratory

    Get PDF
    The research and development work carried out at the Ames Laboratory on the chemistry and metallurgy of yttrium is described in detail in this report or companion reports to which references are herein made. Discussions of the separation of yttrium from the rare-earth elements by ion exchange, of comprehensive investigations of the preparation of yttrium fluoride, and of various ways of reducing the fluoride to the metallic state are presented. Chemical and spectrographic methods of analyzing yttrium and its compounds for oxygen and other impurities are described and comparisons made between the different methods. A pilot plant process for producing tonnage quantities of yttrium metal is presented with detailed descriptions of the equipment and operating procedures employed. The complete process entails the extraction of an yttrium and rare earth mixture from xenotime sand, separation of the yttrium from this mixture in thirty-inch-diameter columns, hydrofluorination of the resulting oxide and its subsequent reduction to the metal. The basic metal process consists of the reduction of yttrium fluoride with calcium, forming a low melting yttrium-magnesium alloy. The magnesium is subsequently removed by vacuum sublimation, producing a porous yttrium product. This is consolidated by vacuum arc melting into a six-inch-diameter ingot. Quantities of high purity yttrium metal were prepared by vacuum distillation and by-a sa,lt extraction refining process. Yttrium metal containing 100 to 300 ppm oxygen is soft, ductile and easily fabricated at room temperature

    How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs

    Full text link
    [EN] Phenaccocus peruvianus Granara de Willink (Hemiptera: pseudococcidae) is an invasive mealybug that has become a pest of ornamental plants in Europe and has recently been detected in California, USA. In this work, we studied the tritrophic interaction among this mealybug, its main parasitoid Acerophagus n. sp. near coccois (Hymenoptera: Encyrtidae) and tending ants to disclose the success of this parasitoid controlling P. peruvianus. Acerophagus n. sp. near coccois accepted mealybugs for parasitism regardless of their size but did not hostfeed. We recorded three active defenses of P. peruvianus. Host handling time-consuming process that required more than 30 min. Tending ants, Lasius grandis (Hymenoptera: Encyrtidae), reduced the time spent by parasitoids in a patch and disrupted oviposition attempts. The low numbers of ants tending mealybugs colonies in Spain and France could explain why this parasitoid, with a long handling time, is an efficient biological control agent for P. peruvianus.Beltrà Ivars, A.; Soto Sánchez, AI.; Tena Barreda, A. (2015). How a slow-ovipositing parasitoid can succed as a biological control agent of the invasive mealybug Phenacoccus peruvianus: implications for future classical and conservation biological control programs. BioControl. 60(4):473-484. https://doi.org/10.1007/s10526-015-9663-6S473484604Arakelian G (2013) Bougainvillea mealybug (Phenacoccus peruvianus). Factsheet 2013. County of Los Angeles. Department of agricultural commissioner/weights and measures, USABartlett BR (1961) The influence of ants upon parasites, predators, and scale insects. Ann Entomol Soc Am 54:543–551Bartlett BR (1978) Pseudococcidae. In: Clausen CP (ed) Introduced parasites and predators of arthropod pests and weeds: a world review, 1st edn. Agricultural Research Service USDA, Washington, USA, pp 137–170Barzman MS, Daane KM (2001) Host-handling behaviors in parasitoids of black scale, Saissetia oleae (Homoptera: Coccidae): a case for ant-mediated evolution. J Anim Ecol 70:237–247Beltrà A, Soto A, Germain JF, Matile-Ferrero D, Mazzeo G, Pellizzari G, Russo A, Franco JC, Williams DJ (2010) The Bougainvillea mealybug Phenacoccus peruvianus, a rapid invader from South America to Europe. Entomol Hell 19:137–143Beltrà A, Garcia-Marí F, Soto A (2013a) Seasonal phenology, spatial distribution, and sampling plan for the invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae). J Econ Entomol 106:1486–1494Beltrà A, Tena A, Soto A (2013b) Fortuitous biological control of the invasive mealybug Phenacoccus peruvianus in Southern Europe. BioControl 58:309–317Beltrà A, Tena A, Soto A (2013c) Reproductive strategies and food sources used by Acerophagus n. sp. near coccois, a new successful parasitoid of the invasive mealybug Phenacoccus peruvianus. J Pest Sci 86:253–259Berlinger MJ, Golberg AM (1978) The effect of the fruit sepals on the citrus mealybug population and on its parasite. Entomol Exp Appl 24:238–243Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher way. Sinauer Associates Inc., Sunderland, UKBoavida C, Ahounou M, Vos M, Neuenschwander P, van Alphen JJM (1995) Host stage selection and sex allocation by Gyranusoidea tebygi (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:487–496Bokonon-Ganta AH, Neuenschwander P, van Alphen JJM, Vos M (1995) Host stage selection and sex allocation by Anagyrus mangicola (Hymenoptera: Encyrtidae), a parasitoid of the mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biol Control 5:479–486Bugila AAA, Franco JC, Borges da Silva E, Branco M (2014a) Defense response of native and alien mealybugs (Hemiptera: Pseudococcidae) against the solitary parasitoid Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera: Encyrtidae). J Insect Behav 27:439–453Bugila AAA, Branco M, Borges da Silva E, Franco JC (2014b) Host selection behavior and specificity of the solitary parasitoid of mealybugs Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera, Encyrtidae). Biocontrol Sci Techn 24:22–38Bynum EK (1937) Pseudococcobius terryi Fullaway, a Hawaiian parasite of Gray Sugarcane mealybug in the United States. J Econ Entomol 30:756–761Cadée N, van Alphen JJM (1997) Host selection and sex allocation in Leptomastidea abnormis, a parasitoid of the citrus mealybug Planococcus citri. Entomol Exp Appl 83:277–284Clausen CP (1924) The parasites of Pseudococcus maritimus (Ehrhorn) in California (Hymenoptera, Chalcidoidea). Part II. Biological studies and life histories. UC Pub Entomol 3:253–288Daane KM, Barzman MS, Caltagirone LE, Hagen KS (2000) Metaphycus anneckei and Metaphycus hageni: two discrete species parasitic on black scale, Saissetia oleae. BioControl 45:269–284Daane KM, Bentley WJ, Walton VM, Malakar-Kuenen R, Millar JC, Ingels CA, Weber EA, Gispert C (2006) New controls investigated for vine mealybug. Calif Agric 60:31–38Daane KM, Sime KR, Fallon J, Cooper ML (2007) Impacts of Argentine ants on mealybugs and their natural enemies in California’s coastal vineyards. Ecol Entomol 32:583–596De Farias AM, Hopper KR (1999) Oviposition behavior of Aphelinus asychis (Hymenoptera: Aphelinidae) and Aphidius matricariae (Hymenoptera: Aphidiidae) and defense behavior of their host Diuraphis noxia (Homoptera: Aphididae). Environ Entomol 28:858–862Dorn B, Mattiacci L, Bellotti AC, Dorn S (2001) Host specificity and comparative foraging behavior of Aenasius vexans and Acerophagus coccois, two endo-parasitoids of the cassava mealybug. Entomol Exp Appl 99:331–339Eisner T, Silberglied RE (1988) A chrysopid larva that cloaks itself in mealybug wax. Psyche 95:15–20Flanders SE (1963) Predation by parasitic Hymenoptera, the basis of ant-induced outbreaks of a host species. J Econ Entomol 56:116Foldi I (1983) Structure et fonctions des glandes tégumentaires de cochenilles Pseudococcines et de leurs secretions. Ann Soc Entomol Fr 19:155–156Foldi I (1997) Defense strategies in scale insects: phylogenetic inference and evolutionary scenarios (Hemiptera, Coccoidea). In: Grandcolas P (ed) The origin of biodiversity in insects: phylogenetic tests of evolutionary scenarios, 1st edn. Muséum National d’Histoire Naturelle, Paris, France, pp 203–230Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, USAGonzález-Hernández H, Johnson MW, Reimer NJ (1999) Impact of Pheidole megacephala (F.) (Hymenoptera: Formicidae) on the biological control of Dysmicoccus brevipes (Cockerell) (Homoptera: Pseudococcidae). Biol Control 15:145–152Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273Gullan PJ (1997) Relationships with ants. In: Ben-Dov Y, Hodgson CJ (eds) Soft scale insects—their biology natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 351–373Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50Hcidari M, Jahan M (2000) A study of ovipositional behavior of Anagyrus pseudococci a parasitoid of mealybugs. J Agric Sci Technol 2:49–53Honda JY, Luck RF (1995) Scale morphology effects on feeding behavior and biological control potential of Rhyzobius lophanthae (Coleoptera: Coccinellidae). Ann Entomol Soc Am 88:441–450Joyce AL, Hoddle MS, Bellows TS, Gonzalez D (2001) Oviposition behavior of Coccidoxenoides peregrinus, a parasitoid of Planococcus ficus. Entomol Exp Appl 98:49–57Karamaouna F (1999) Biology of the parasitoids Leptomastix epona (Walker) and Pseudaphycus flavidulus (Brèthes) and behavioural interactions with the host mealybug Pseudococcus viburni (Signoret). Ph.D. Thesis, University of London, UK, p 333Karamaouna F, Copland MJ (2000) Oviposition behavior, influence of experience on host size selection, and niche overlap of the solitary Leptomastix epona and the gregarious Pseudaphycus flavidulus, two endoparasitoids of the mealybug Pseudococcus viburni. Entomol Exp Appl 97:301–308Klotz JH, Hansen L, Pospischil R, Rust M (2008) Urban ants of North America and Europe. Cornell University Press, Ithaca, USAMailleux AC, Deneubourg JL, Detrain C (2003) Regulation of ants foraging to resource productivity. P R Soc Lond B Bio 270:1609–1616Majerus ME, Sloggett JJ, Godeau JF, Hemptinne JL (2007) Interactions between ants and aphidophagous and coccidophagous ladybirds. Popul Ecol 49:15–27Mgocheki N, Addison P (2009) Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol Control 49:180–185Moore D (1988) Agents used for biological control of mealybugs (Pseudococcidae). Biocontrol News Inf 9:209–225Paris CI, Espadaler X (2009) Honeydew collection by the invasive garden ant Lasius neglectus versus the native ant L grandis. Arthropod Plant Interact 3:75–85Pekas A, Tena A, Aguilar A, Garcia-Marí F (2011) Spatio-temporal patterns and interactions with honeydew-producing Hemiptera of ants in a Mediterranean citrus orchard. Agric Forest Entomol 13:89–97Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol 51:233–258Pijls JW, Hofker KD, Staalduinen MJ, van Alphen JJM (1995) Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A(E) diversicornis parasitoids of the cassava mealybug Phenacoccus manihoti. Ecol Entomol 20:326–332Robert Y (1987) Dispersion and migration. In: Minks AK, Harrewijn P (eds) Aphids—their biology, natural enemies and control, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 299–313Sandanayaka WRM, Charles JG, Allan DJ (2009) Aspects of the reproductive biology of Pseudaphycus maculipennis (Hym: Encyrtidae), a parasitoid of obscure mealybug, Pseudococcus viburni (Hem: Pseudococcidae). Biol Control 48:30–35Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York, USASime KR, Daane KM (2014) Rapid, non-discriminatory oviposition behaviors are favored in mealybug parasitoids when Argentine ants are present. Environ Entomol 43:995–1002Tena A, Garcia-Marí F (2008) Suitability of citricola scale Coccus pseudomagnoliarum (Hemiptera: Coccidae) as host of Metaphycus helvolus (Hymenoptera: Encyrtidae): Influence of host size and encapsulation. Biol Control 46:341–347Tena A, Hoddle CD, Hoddle MS (2013) Competition between honeydew producers in an ant–hemipteran interaction may enhance biological control of an invasive pest. Bull Entomol Res 103:714–723The R Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austriavan Driesche RG, Belloti A, Herrera CJ, Castello JA (1987a) Host preferences of two encyrtid parasitoids for the Columbian Phenacoccus spp. of cassava mealybugs. Entomol Exp Appl 43:261–266van Driesche RG, Belloti A, Herrera CJ, Castello JA (1987b) Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids Epidinocarsis diversicornis and Acerophagus coccois. Entomol Exp Appl 44:97–100Vet LE, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491Wajnberg E (1989) Analysis of variations of handling-time in Trichogramma maidis. Entomophaga 34:397–407Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661Wyckhuys KAG, Stone L, Desneux N, Hoelmer KA, Hopper KR, Heimpel GE (2008) Parasitism of the soybean aphid Aphis glycines by Binodoxys communis: the role of aphid defensive behavior and parasitoid reproductive performance. Bull Entomol Res 98:361–370Zain-ul-Abdin, Arif MJ, Suhail A, Gogi MD, Arshad M, Wakil W, Abbas SK, Altaf A, Shaina H, Manzoor A (2012) Molecular analysis of the venom of mealybug parasitoid Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae). Pak Entomol 34:189–193Zinna G (1959) Specializzazione entomoparassitica negli Encyrtidae: studio morfologico etologico e fisiologico del Leptomastix dactylopii. Howard Boll Lab agr Filippo Silvestri 18:1–14

    Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States

    Get PDF
    Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States (U.S.) a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental U.S., as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern U.S. populations, but no evidence of any population structure between different latitudes within the continental U.S., suggesting there is no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western U.S. and from the Eastern U.S. to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western U.S. back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pes

    Drosophila suzukii population response to environment and management strategies

    Get PDF
    19openInternationalInternational coauthor/editorDrosophila suzukii causes economic damage to berry and stone fruit worldwide. Laboratory-generated datasets were standardized and combined on the basis of degree days (DD), using Gompertz and Cauchy curves for survival and reproduction. Eggs transitioned to larvae at 20.3 DD; larvae to pupae at 118.1 DD; and pupae to adults at 200 DD. All adults are expected to have died at 610 DD. Oviposition initiates at 210 DD and gradually increases to a maximum of 15 eggs per DD at 410 DD and subsequently decreases to zero at 610 DD. These data were used as the basis for a DD cohort-level population model. Laboratory survival under extreme temperatures when DD did not accumulate was described by a Gompertz curve based on calendar days. We determined that the initiation of the reproductive period of late dormant field-collected female D. suzukii ranged from 50 to 800 DD from January 1. This suggests that D. suzukii females can reproduce early in the season and are probably limited by availability of early host plants. Finally, we used the DD population model to examine hypothetical stage-specific mortality effects of IPM practices from insecticides and parasitoids at the field level. We found that adulticides applied during the early season will result in the largest comparative population decrease. It is clear from model outputs that parasitism levels comparable to those found in field studies may have a limited effect on population growth. Novel parasitoid guilds could therefore be improved and would be valuable for IPM of D. suzukii.openWiman, N.G.; Dalton, D.T.; Anfora, G.; Biondi, A.; Chiu, J.; Daane, K.M.; Gerdeman, B.; Gottardello, A.; Hamby, K.; Isaacs, R.; Grassi, A.; Ioriatti, C.; Lee, J.C.; Miller, B.; Rossi Stacconi, V.; Shearer, P.W.; Tanigoshi, L.; Wang, X.; Walton, V.M.Wiman, N.G.; Dalton, D.T.; Anfora, G.; Biondi, A.; Chiu, J.; Daane, K.M.; Gerdeman, B.; Gottardello, A.; Hamby, K.; Isaacs, R.; Grassi, A.; Ioriatti, C.; Lee, J.C.; Miller, B.; Rossi Stacconi, M.V.; Shearer, P.W.; Tanigoshi, L.; Wang, X.; Walton, V.M
    • …
    corecore