92 research outputs found

    Prevalence and Prognostic Significance of HPV in Laryngeal Squamous Cell Carcinoma in Northeast China

    Get PDF
    Background/Aims: Human papillomavirus (HPV) is an etiological risk factor for a subset of head and neck squamous cell carcinomas. HPV has been proven to be a powerful prognostic biomarker for oropharyngeal cancer, but its role in the larynx has not been explored in depth. Here, we sought to evaluate the prevalence and genotype distribution of HPV in patients with laryngeal squamous cell carcinoma (LSCC) in northeast China. Methods: HPV DNA in specimens from 211 patients diagnosed with LSCC was analyzed by the polymerase chain reaction and in situ hybridization, and p16 overexpression was evaluated by immunohistochemistry. p16 expression was scored positive if strong and diffuse nuclear and cytoplasmic staining was present in > 75% of tumor cells. Results: In this study, infection with HPV and p16 expression were not absolutely consistent. Among all patients, 132 (62.6%) were positive for HPV DNA (HPV+), while 23 (10.9%) were inconsistent for HPV and p16. Multivariate analysis indicated that HPV, but not p16, is an independent prognostic factor for overall survival in LSCC. Overall survival was significantly improved in HPV+ LSCC patients compared with the HPV-negative group (hazard ratio, 0.395; 95% confidence interval, 0.185–0.843; p = 0.016). Among the 132 HPV+ patients, 28 (21.2%) were HPV-16 single infection. Conclusion: This study indicates that HPV DNA is a more reliable surrogate marker than p16 for the prediction of survival in patients with LSCC

    Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease

    Get PDF
    Background & AimsNon-alcoholic fatty liver disease (NAFLD) is a progressive liver disease with potentially severe complications including cirrhosis and hepatocellular carcinoma. Previously, we have identified circulating lipid signatures associating with liver fat content and non-alcoholic steatohepatitis (NASH). Here, we develop a metabolomic map across the NAFLD spectrum, defining interconnected metabolic signatures of steatosis (non-alcoholic fatty liver, NASH, and fibrosis).MethodsWe performed mass spectrometry analysis of molecular lipids and polar metabolites in serum samples from the European NAFLD Registry patients (n = 627), representing the full spectrum of NAFLD. Using various univariate, multivariate, and machine learning statistical approaches, we interrogated metabolites across 3 clinical perspectives: steatosis, NASH, and fibrosis.ResultsFollowing generation of the NAFLD metabolic network, we identify 15 metabolites unique to steatosis, 18 to NASH, and 15 to fibrosis, with 27 common to all. We identified that progression from F2 to F3 fibrosis coincides with a key pathophysiological transition point in disease natural history, with n = 73 metabolites altered.ConclusionsAnalysis of circulating metabolites provides important insights into the metabolic changes during NAFLD progression, revealing metabolic signatures across the NAFLD spectrum and features that are specific to NAFL, NASH, and fibrosis. The F2–F3 transition marks a critical metabolic transition point in NAFLD pathogenesis, with the data pointing to the pathophysiological importance of metabolic stress and specifically oxidative stress.</p

    Quantitative modelling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.</p

    Marked gut microbiota dysbiosis and increased imidazole propionate are associated with a NASH Göttingen Minipig model

    Get PDF
    Background: Gut microbiota dysbiosis is associated with the development of non‑alcoholic steatohepatitis (NASH) through modulation of gut barrier, inflammation, lipid metabolism, bile acid signaling and short‑chain fatty acid production. The aim of this study was to describe the impact of a choline‑deficient amino acid defined high fat diet (CDAHFD) on the gut microbiota in a male Göttingen Minipig model and on selected pathways implicated in the development of NASH. Results: Eight weeks of CDAHFD resulted in a significantly altered colon microbiota mainly driven by the bacterial families Lachnospiraceae and Enterobacteriaceae, being decreased and increased in relative abundance, respectively. Metabolomics analysis revealed that CDAHFD decreased colon content of short‑chain fatty acid and increased colonic pH. In addition, serum levels of the microbially produced metabolite imidazole propionate were significantly elevated as a consequence of CDAHFD feeding. Hepatic gene expression analysis showed upregulation of mechanistic target of rapamycin (mTOR) and Ras Homolog, MTORC1 binding in addition to downregulation of insulin receptor substrate 1, insulin receptor substrate 2 and the glucagon receptor in CDAHFD fed minipigs. Further, the consequences of CDAHFD feeding were associated with increased levels of circulating cholesterol, bile acids, and glucagon but not total amino acids. Conclusions: Our results indicate imidazole propionate as a new potentially relevant factor in relation to NASH and discuss the possible implication of gut microbiota dysbiosis in the development of NASH. In addition, the study emphasizes the need for considering the gut microbiota and its products when developing translational animal models for NASH

    Prenatal exposure to perfluoroalkyl substances modulates neonatal serum phospholipids, increasing risk of type 1 diabetes

    Get PDF
    In the last decade, increasing incidence of type 1 diabetes (T1D) stabilized in Finland, a phenomenon that coincides with tighter regulation of perfluoroalkyl substances (PFAS). Here, we quantified PFAS to examine their effects, during pregnancy, on lipid and immune-related markers of T1D risk in children. In a mother-infant cohort (264 dyads), high PFAS exposure during pregnancy associated with decreased cord serum phospholipids and progression to T1D-associated islet autoantibodies in the offspring. This PFAS-lipid association appears exacerbated by increased human leukocyte antigen-conferred risk of T1D in infants. Exposure to a single PFAS compound or a mixture of organic pollutants in non-obese diabetic mice resulted in a lipid profile characterized by a similar decrease in phospholipids, a marked increase of lithocholic acid, and accelerated insulitis. Our findings suggest that PFAS exposure during pregnancy contributes to risk and pathogenesis of T1D in offspring.</p

    Implicit Temporal Expectation Attenuates Auditory Attentional Blink

    Get PDF
    Attentional blink (AB) describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe) nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20%) that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB

    The diploid genome sequence of an Asian individual

    Get PDF
    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family
    corecore