36,989 research outputs found

    Transient dynamics for sequence processing neural networks: effect of degree distributions

    Full text link
    We derive a analytic evolution equation for overlap parameters including the effect of degree distribution on the transient dynamics of sequence processing neural networks. In the special case of globally coupled networks, the precisely retrieved critical loading ratio αc=N1/2\alpha_c = N ^{-1/2} is obtained, where NN is the network size. In the presence of random networks, our theoretical predictions agree quantitatively with the numerical experiments for delta, binomial, and power-law degree distributions.Comment: 11 pages, 6 figure

    Geometric phase for nonlinear coherent and squeezed state

    Full text link
    The geometric phases for standard coherent states which are widely used in quantum optics have attracted a large amount of attention. Nevertheless, few physicists consider about the counterparts of non-linear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated respectively. Moreover, some of their common properties are discussed respectively, such as gauge invariance, non-locality and non-linear effects. The non-linear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r -> \infinity, the limiting value of the geometric phase is also determined by non-linear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states maybe regarded as a geometric criterion

    Adiabatic Condition and Quantum Geometric Potential

    Full text link
    In this paper, we present a U(1)-invariant expansion theory of the adiabatic process. As its application, we propose and discuss new sufficient adiabatic approximation conditions. In the new conditions, we find a new invariant quantity referred as quantum geometric potential (QGP) contained in all time-dependent processes. Furthermore, we also give detailed discussion and analysis on the properties and effects of QGP.Comment: 5 pages, 1 figur

    Structural constraints in complex networks

    Get PDF
    We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich--club connectivity are preserved. We consider three real networks, the AS--Internet, the protein interaction and the scientific collaboration. We show that for a given degree distribution, the rich--club connectivity is sensitive to the degree--degree correlation, and on the other hand the degree--degree correlation is constrained by the rich--club connectivity. In particular, in the case of the Internet, the assortative coefficient is always negative and a minor change in its value can reverse the network's rich--club structure completely; while fixing the degree distribution and the rich--club connectivity restricts the assortative coefficient to such a narrow range, that a reasonable model of the Internet can be produced by considering mainly the degree distribution and the rich--club connectivity. We also comment on the suitability of using the maximal random network as a null model to assess the rich--club connectivity in real networks.Comment: To appear in New Journal of Physics (www.njp.org

    Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary

    Get PDF
    A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio

    Failure regime in (1+1) dimensions in fibrous materials

    Full text link
    In this paper, we introduce a model for fracture in fibrous materials that takes into account the rupture height of the fibers, in contrast with previous models. Thus, we obtain the profile of the fracture and calculate its roughness, defined as the variance around the mean height. We investigate the relationship between the fracture roughness and the fracture toughness.Comment: 4 pages, 4 figures.eps, Revte

    Demonstrating Additional Law of Relativistic Velocities based on Squeezed Light

    Full text link
    Special relativity is foundation of many branches of modern physics, of which theoretical results are far beyond our daily experience and hard to realized in kinematic experiments. However, its outcomes could be demonstrated by making use of convenient substitute, i.e. squeezed light in present paper. Squeezed light is very important in the field of quantum optics and the corresponding transformation can be regarded as the coherent state of SU(1; 1). In this paper, the connection between the squeezed operator and Lorentz boost is built under certain conditions. Furthermore, the additional law of relativistic velocities and the angle of Wigner rotation are deduced as well

    Searching for new physics in bssdˉb\to s s \bar d decays

    Full text link
    For any new physics possibly emerging in the future B experiments, the problem is how to extract the signals from the SM background. We consider the decay bssdˉb\to s s\bar d which is very small in the SM. In the MSSM this decay is possibly accessible in the future experiments. In the supersymmetric models with R-parity violating couplings, this channel is not strictly constrained, thus being useful in obtaining bounds on the lepton-number violating couplings. A typical candidate for the suggested search is the BKKπ+B^-\to K^-K^-\pi^+ mode.Comment: 9 pages, one figure, late
    corecore