2,614 research outputs found
Elastic precursor of the transformation from glycolipid-nanotube to -vesicle
By the combination of optical tweezer manipulation and digital video
microscopy, the flexural rigidity of single glycolipid "nano" tubes has been
measured below the transition temperature at which the lipid tubules are
transformed into vesicles. Consequently, we have found a clear reduction of the
rigidity obviously before the transition as temperature increasing. Further
experiments of infrared spectroscopy (FT-IR) and differential scanning
calorimetry (DSC) have suggested a microscopic change of the tube walls,
synchronizing with the precursory softening of the nanotubes.Comment: 9 pages, 6 figure
Lens magnification by CL0024+1654 in the U and R band
[ABRIDGED] We estimate the total mass distribution of the galaxy cluster
CL0024+1654 from the measured source depletion due to lens magnification in the
R band. Within a radius of 0.54Mpc/h, a total projected mass of
(8.1+/-3.2)*10^14 M_sol/h (EdS) is measured, which corresponds to a mass-
to-light ratio of M/L(B)=470+/-180. We compute the luminosity function of
CL0024+1654 in order to estimate contamination of the background source counts
from cluster galaxies. Three different magnification-based reconstruction
methods are employed using both local and non-local techniques. We have
modified the standard single power-law slope number count theory to incorporate
a break and applied this to our observations. Fitting analytical magnification
profiles of different cluster models to the observed number counts, we find
that the cluster is best described either by a NFW model with scale radius
r_s=334+/-191 kpc/h and normalisation kappa_s=0.23+/-0.08 or a power-law
profile with slope xi=0.61+/-0.11, central surface mass density
kappa_0=1.52+/-0.20 and assuming a core radius of r_core=35 kpc/h. The NFW
model predicts that the cumulative projected mass contained within a radius R
scales as M(<R)=2.9*10^14*(R/1')^[1.3-0.5lg (R/1')] M_sol/h. Finally, we have
exploited the fact that flux magnification effectively enables us to probe
deeper than the physical limiting magnitude of our observations in searching
for a change of slope in the U band number counts. We rule out both a total
flattening of the counts with a break up to U_AB<=26.6 and a change of slope,
reported by some studies, from dlog N/dm=0.4->0.15 up to U_AB<=26.4 with 95%
confidence.Comment: 19 pages, 12 figures, submitted to A&A. New version includes more
robust U band break analysis and contamination estimates, plus new plot
Cassiopeia A: dust factory revealed via submillimetre polarimetry
If Type-II supernovae - the evolutionary end points of short-lived, massive
stars - produce a significant quantity of dust (>0.1 M_sun) then they can
explain the rest-frame far-infrared emission seen in galaxies and quasars in
the first Gyr of the Universe. Submillimetre observations of the Galactic
supernova remnant, Cas A, provided the first observational evidence for the
formation of significant quantities of dust in Type-II supernovae. In this
paper we present new data which show that the submm emission from Cas A is
polarised at a level significantly higher than that of its synchrotron
emission. The orientation is consistent with that of the magnetic field in Cas
A, implying that the polarised submm emission is associated with the remnant.
No known mechanism would vary the synchrotron polarisation in this way and so
we attribute the excess polarised submm flux to cold dust within the remnant,
providing fresh evidence that cosmic dust can form rapidly. This is supported
by the presence of both polarised and unpolarised dust emission in the north of
the remnant, where there is no contamination from foreground molecular clouds.
The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which,
coupled with the brief timescale available for grain alignment (<300 yr),
suggests that supernova dust differs from that seen in other Galactic sources
(where f_pol=2-7%), or that a highly efficient grain alignment process must
operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou
Combining high conductivity with complete optical transparency: A band-structure approach
A comparison of the structural, optical and electronic properties of the
recently discovered transparent conducting oxide (TCO), nanoporous Ca12Al14O33,
with those of the conventional TCO's (such as Sc-doped CdO) indicates that this
material belongs conceptually to a new class of transparent conductors. For
this class of materials, we formulate criteria for the successful combination
of high electrical conductivity with complete transparency in the visible
range. Our analysis suggests that this set of requirements can be met for a
group of novel materials called electrides.Comment: 3 pages, 3 figures, submitted for publicatio
Heat transfer phase change paint test (OH-42) of a Rockwell International SSV orbiter in the NASA/LRC Mach 8 variable density wind tunnel
Phase change paint tests of a Rockwell International .00593-scale space shuttle orbiter were conducted in the Langley Research Center's Variable Density Wind Tunnel. The test objectives were to determine the effects of various wing/underbody configurations on the aerodynamic heating rates and boundary layer transition during simulated entry conditions. Several models were constructed. Each varied from the other in either wing cuff radius, airfoil thickness, or wing-fuselage underbody blending. Two ventral fins were glued to the fuselage underside of one model to test the interference heating effects. Simulated Mach 8 entry data were obtained for each configuration at angles of attack ranging from 25 to 40 deg, and a Reynolds number variation of one million to eight million. Elevon, bodyflap, and rudder flare deflections were tested. Oil flow visualization and Schlieren photographs were obtained to aid in reducing the phase change paint data as well as to observe the flow patterns peculiar to each configuration
- âŠ