39 research outputs found

    Melatonin protects rats from radiotherapy-induced small intestine toxicity

    Get PDF
    Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-κB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients.This study was partially supported by grant no. SAF2009-14037 from the Spanish Ministry of Economy and Competitivity (MINECO), GREIB.PT_2010_04 from the CEIBiotic Program of the University of Granada, Spain, and CTS-101 from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain

    Lutzomyia umbratilis, the Main Vector of Leishmania guyanensis, Represents a Novel Species Complex?

    Get PDF
    BACKGROUND: Lutzomyia umbratilis is an important Leishmania guyanensis vector in South America. Previous studies have suggested differences in the vector competence between L. umbratilis populations situated on opposite banks of the Amazonas and Negro Rivers in the central Amazonian Brazil region, likely indicating a species complex. However, few studies have been performed on these populations and the taxonomic status of L. umbratilis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Phylogeographic structure was estimated for six L. umbratilis samples from the central Amazonian region in Brazil by analyzing mtDNA using 1181 bp of the COI gene to assess whether the populations on opposite banks of these rivers consist of incipient or distinct species. The genetic diversity was fairly high and the results revealed two distinct clades ( = lineages) with 1% sequence divergence. Clade I consisted of four samples from the left bank of the Amazonas and Negro Rivers, whereas clade II comprised two samples from the right bank of Negro River. No haplotypes were shared between samples of two clades. Samples within clades exhibited low to moderate genetic differentiation (F(ST) = -0.0390-0.1841), whereas samples between clades exhibited very high differentiation (F(ST) = 0.7100-0.8497) and fixed differences. These lineages have diverged approximately 0.22 Mya in the middle Pleistocene. Demographic expansion was detected for the lineages I and II approximately 30,448 and 15,859 years ago, respectively, in the late Pleistocene. CONCLUSIONS/SIGNIFICANCE: The two genetic lineages may represent an advanced speciation stage suggestive of incipient or distinct species within L. umbratilis. These findings suggest that the Amazonas and Negro Rivers may be acting as effective barriers, thus preventing gene flow between populations on opposite sides. Such findings have important implications for epidemiological studies, especially those related to vector competence and anthropophily, and for vector control strategies. In addition, L. umbratilis represents an interesting example in speciation studies

    Geographic origin and migration phenology of European red admirals (Vanessa atalanta) as revealed by stable isotopes.

    Get PDF
    BACKGROUND: Long-distance migration has evolved multiple times in different animal taxa. For insect migrants, the complete annual migration cycle covering several thousand kilometres, may be performed by several generations, each migrating part of the distance and reproducing. Different life-cycle stages and preferred orientation may thus, be found along the migration route. For migrating red admirals (Vanessa atalanta) it has been questioned if they reproduce in the most northern part of the range. Here we present migration phenology data from a two-year time series of migrating red admirals captured at Rybachy, Kaliningrad, in the northern part of Europe investigating time for migration, life-history stage (migration, reproduction) as well as site of origin in individual butterflies. METHODS: Red admirals were captured daily at a coastal site during spring, summer and autumn in 2004 and 2005. For the sampled individuals, reproductive status and fuel content were estimated by visual inspection, and hydrogen isotopes (δ 2H) were analysed in wing samples. δ 2H values was compared with samples from two nearby reference sites in Estonia and Poland. RESULTS: Analysis of hydrogen isotopes (δ 2H) in red admiral wings showed that the spring cohort were of a southerly origin, while those caught in August or later in the autumn were from the local region or areas further to the north. All females caught during spring had developing eggs in their abdomen, but no eggs were found in late summer/autumn. There was a male-biased sex ratio during autumn and a difference in lipid content between years. When comparing the isotopic data with inland nearby locations, it was clear that the range of δ 2H values (- 181 to - 78) was wider at Rybachy as compared to the two reference sites in Estonia and Poland (- 174 to - 100). CONCLUSIONS: During spring, migratory female red admirals arrived from the south and were ready to reproduce, while the autumn passage mainly engaged local and more northern individuals carrying large fuel deposits in preparation for long-distance migration. The phenology data suggest that individuals select to migrate in favourable weather conditions and that numbers may differ between years. Future studies should focus on individual sampling at a wide range of sites to reveal differential migration strategies and timing of migration between sexes and populations of migrating butterflies

    Congo basin: From carbon to fishes COBAFISH. Final Report

    Full text link
    The Congo River harbours the richest known fish species diversity on the African continent. Its fish fauna also represents a major source of proteins for the riparian human population. Despite of this, the ecology, dynamics and ecosystem functioning of the Congo River remain poorly understood. The overall goal of the COBAFISH project is to link terrestrial inputs, primary producers (algae and quatic macrophytes), macro-invertebrate and fish biodiversity to ecosystem dynamics and functioning in the Congo River in order to delineate factors that drive species and trophic biodiversity of fishes.COBAFIS
    corecore