200 research outputs found

    In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.No external funding was available to undertake this work

    Draft Genome Sequence of Staphylococcus cohnii subsp. urealyticus Isolated from a Healthy Dog.

    Get PDF
    Staphylococcus cohnii subsp. urealyticus strain SW120 was isolated from the ear swab of a healthy dog. The isolate is resistant to methicillin and fusidic acid. The SW120 draft genome is 2,805,064 bp and contains 2,667 coding sequences, including 58 tRNAs and nine complete rRNA coding regions

    Evaluation of an Immunochromatographic Lateral Flow Assay (OXA-48 K-SeT) for Rapid Detection of OXA-48-Like Carbapenemases in Enterobacteriaceae

    Get PDF
    We evaluated an immunochromatographic lateral flow assay for the detection of OXA-48-like carbapenemases (OXA-48 K-SeT) in Enterobacteriaceae (n=82). 100% sensitivity and specificity was observed using bacteria recovered from both solid media and spiked blood culture bottles, with the result obtained in less than 10 minutes

    Draft Genome Sequence of Providencia stuartii PS71, a Multidrug-Resistant Strain Associated with Nosocomial Infections in Greece.

    Get PDF
    Providencia stuartii is frequently associated with nosocomial outbreaks and displays intrinsic resistance to many commonly used antimicrobials. We report here the draft genome sequence of a P. stuartii strain carrying acquired resistance genes conferring panresistance to cephalosporins (blaSHV-5 and blaVEB-1), carbapenems (blaVIM-1), and aminoglycosides (rmtB) involved in an outbreak in Greek hospitals

    ESBL-producing Enterobacteriaceae in 24 neonatal units and associated networks in the south of England: no clustering of ESBL-producing Escherichia coli in units or networks.

    Get PDF
    OBJECTIVES: The objectives of this study were to characterize ESBL-producing Enterobacteriaceae present in 24 neonatal units (NNUs) in eight networks participating in a multicentre probiotic study and to test the hypothesis that specific strains would cluster within individual units and networks. METHODS: We performed analysis of stool samples for the presence of ESBL-producing Enterobacteriaceae at 2 weeks post-natal age and 36 weeks post-menstrual age. ESBL-producing Enterobacteriaceae were characterized and typed using molecular methods. RESULTS: ESBL-producing Enterobacteriaceae (n = 71) were isolated from 67/1229 (5.5%) infants from whom we received a sample at either sampling time or both sampling times, and from infants in 18 (75%) of the 24 recruiting NNUs. Thirty-three Escherichia coli, 23 Klebsiella spp. and 6 Enterobacter spp. strains were characterized. ESBL-producing E. coli were all distinguishable within individual NNUs by antibiotic resistance genotype, serogroup (O25b), phenotype, phylotype or ST. Ten of the 33 were ST131 and 9 of the 10 ST131 isolates were ciprofloxacin resistant. Seven of the 10 ST131 isolates carried genes encoding CTX-M group 1 enzymes. ST131 isolates were isolated from centres within five of the eight NNU networks. There were clusters of indistinguishable ESBL-producing Klebsiella and Enterobacter isolates associated with specific NNUs. CONCLUSIONS: Strains of E. coli ST131 were distributed across neonatal networks in the south of England. There was no evidence of clustering of clonally related ESBL-producing E. coli strains, by contrast with Klebsiella spp. and Enterobacter spp., which did cluster within units. The possibility that ESBL-producing E. coli strains are spread by vertical transmission requires further investigation

    Cyclic Boronates Inhibit All Classes of β-Lactamase

    Get PDF
    β-Lactamase-mediated resistance is a growing threat to the continued use of β-lactam antibiotics. The use of the β-lactam-based serine-β-lactamase (SBL) inhibitors clavulanic acid, sulbactam, tazobactam, and, more recently, the non-β-lactam inhibitor avibactam has extended the utility of β-lactams against bacterial infections demonstrating resistance via these enzymes. These molecules are, however, ineffective against the metallo-β-lactamases (MBLs), which catalyse their hydrolysis. To date, there are no clinically available metallo-β-lactamase inhibitors. Co-production of MBLs and SBLs in resistant infections is, thus, of major clinical concern. The development of ‘dual-action' inhibitors, targeting both SBLs and MBLs, is of interest, but these are considered difficult to achieve due to the structural and mechanistic differences between the two enzyme classes. We recently reported evidence that cyclic boronates can inhibit both serine- and metallo-β-lactmases. Here we report that cyclic boronates are able to inhibit all four classes of β-lactamase, including the class A extended spectrum β-lactamase, CTX-M-15, the class C enzyme, AmpC from Pseudomonas aeruginosa, and class D OXA enzymes with carbapenem-hydrolysing capabilities. We demonstrate that cyclic boronates can potentiate the use of β-lactams against Gram-negative clinical isolates expressing a variety of β-lactamases. Comparison of a crystal structure of a CTX-M-15:cyclic boronate complex with structures of cyclic boronates complexed with other β-lactamases reveals remarkable conservation of the small molecule binding mode, supporting our proposal that these molecules work by mimicking the common tetrahedral anionic intermediate present in both serine- and metallo-β-lactamase catalysis

    Effects of In vivo Emergent Tigecycline Resistance on the Pathogenic Potential of Acinetobacter baumannii.

    Get PDF
    Multidrug-resistant lineages of Acinetobacter baumannii (MDRAB) are important nosocomial pathogens. As tigecycline remains active against most MDRAB we sought to investigate whether tigecycline resistance impacts biological fitness. The effects of treatment-emergent tigecycline resistance were investigated in vitro and in vivo using two pre- (AB210; W6976) and post-therapy (AB211; W7282) clinical pairs, recovered from individual patients, where tigecycline resistance was associated with up-regulated efflux activity. All isolates belonged to the same epidemic UK lineage. Significant differences were observed in end-point survival proportions between AB210 and AB211, but not between W6976 and W7282, using the Galleria mellonella infection model. Isolate AB211 outcompeted AB210 in vivo, in contrast to isolate W7282, which was outcompeted by its pre-therapy counterpart, W6972. Whole-genome sequencing of isolates W6976 and W7282 revealed a mutation in the adeABC regulatory gene, adeS in W7282; resulting in a Ser-8 → Arg substitution. Previous whole-genome comparison of AB210 and AB211 also identified a non-synonymous mutation in adeS, among several other lesions in genes involved in biofilm formation and DNA mismatch repair; consistent with the phenotypic differences described here. In conclusion, the differing effects on the wider phenotype were not predictable from the antibiograms or clonal lineage, despite a common mechanism of tigecycline resistance.Pfize

    Varicella-Zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line

    Get PDF
    Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells

    Optimal detection of carbapenemase-producing Enterobacteriaceae from rectal samples: a role for enrichment?

    Get PDF
    BACKGROUND: Successful laboratory detection of carbapenemase-producing Enterobacteriaceae (CPE) in patient surveillance samples is a diagnostic challenge. In the absence of a reference standard for screening rectal swabs for CPE, many phenotypic, genotypic, culture- and non-culture-based assays have been proposed for identifying these bacteria. AIM: To develop and optimize a CPE screening protocol capable of identifying all frequently encountered CPE, including those producing OXA-48-like carbapenemases. METHODS: Faropenem susceptibility testing was performed on 507 presumptive CPE isolated from diagnostic samples and CPE rectal screens between March and August 2016. Results from this CPE screening method were compared to those from direct culture on mSuperCARBA™, temocillin enrichment culture, and use of an antibiotic resistance algorithm, to determine the optimal method to employ in the detection of CPE. FINDINGS: Faropenem was a poor predictor of carbapenemase production (58% true positives). The combination of a temocillin enrichment stage and interpretive reading of antibiotic resistance phenotypes improved the recovery and identification of CPE significantly (91% true positives), especially for OXA-48 producers (P = 0.03). CONCLUSION: The combination of temocillin enrichment, a selective chromogenic medium, and an antibiotic resistance-based algorithm significantly improved the detection of all CPE recovered from routine and targeted surveillance samples
    corecore