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ABSTRACT �-Lactamase-mediated resistance is a growing threat to the continued
use of �-lactam antibiotics. The use of the �-lactam-based serine-�-lactamase (SBL)
inhibitors clavulanic acid, sulbactam, and tazobactam and, more recently, the non-�-
lactam inhibitor avibactam has extended the utility of �-lactams against bacterial in-
fections demonstrating resistance via these enzymes. These molecules are, however,
ineffective against the metallo-�-lactamases (MBLs), which catalyze their hydrolysis.
To date, there are no clinically available metallo-�-lactamase inhibitors. Coproduc-
tion of MBLs and SBLs in resistant infections is thus of major clinical concern. The
development of “dual-action” inhibitors, targeting both SBLs and MBLs, is of interest,
but this is considered difficult to achieve due to the structural and mechanistic dif-
ferences between the two enzyme classes. We recently reported evidence that cyclic
boronates can inhibit both serine- and metallo-�-lactamases. Here we report that cy-
clic boronates are able to inhibit all four classes of �-lactamase, including the class A
extended spectrum �-lactamase CTX-M-15, the class C enzyme AmpC from Pseu-
domonas aeruginosa, and class D OXA enzymes with carbapenem-hydrolyzing capa-
bilities. We demonstrate that cyclic boronates can potentiate the use of �-lactams
against Gram-negative clinical isolates expressing a variety of �-lactamases. Compari-
son of a crystal structure of a CTX-M-15:cyclic boronate complex with structures of
cyclic boronates complexed with other �-lactamases reveals remarkable conservation
of the small-molecule binding mode, supporting our proposal that these molecules
work by mimicking the common tetrahedral anionic intermediate present in both
serine- and metallo-�-lactamase catalysis.
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The �-lactam antibiotics remain the most important drug class for the treatment of
bacterial infections (1). However, their continued use is jeopardized by the increas-

ing spread of resistance mechanisms, including that mediated by �-lactamases, which,
cumulatively, can hydrolyze all classes of �-lactam antibiotics (2). �-Lactamases can be
divided into four classes (Ambler classes A, B, C, and D [3]) and manifest considerable
sequence and structural diversity as well as different, but overlapping, substrate profiles
(4). The serine-�-lactamases (SBLs), classes A, C, and D, likely evolved from the
penicillin-binding protein (PBP) targets of �-lactam antibiotics (5–8). Among the SBLs,
the extended-spectrum SBLs (ESBLs) are of particular clinical concern. Their ability to
hydrolyze extended spectrum cephalosporins and the monobactam aztreonam (AZT)
(9) is an important reason for failure of cephalosporin-based therapies (10). Of particular
note are the CTX-M enzymes, which have become the most prevalent ESBLs worldwide
(11). The SBL carbapenemases, such as variants of class D enzymes OXA-23 and OXA-48,
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are a growing concern, since they are able to hydrolyze carbapenems, which have often
been used as the last line of antibacterial defense (12). Inhibitors of the SBLs include the
�-lactams clavulanic acid (CLAV), sulbactam (SUL), and tazobactam (TAZ), which are
active against class A �-lactamases (2, 13, 14), and the recently introduced non-�-
lactam �-lactamase inhibitor avibactam, which has a broader spectrum of SBL inhibi-
tion activity (15, 16). These inhibitors have increased the efficacy of �-lactam antibiotics
against SBL-mediated resistance in bacteria, but they are inactive against the Zn(II)-
dependent class B metallo-�-lactamases (MBLs), which constitute a structural and
mechanistically distinct family of enzymes and exhibit considerable heterogeneity,
even among themselves (17). The MBLs are able to hydrolyze all classes of �-lactam
except for monobactams (18). The ability of the MBLs to hydrolyze SBL inhibitors,
including avibactam (19), is a growing problem in the treatment of infections where
both SBL- and MBL-mediated cephalosporin and carbapenem resistance have been
acquired (20). To date there are no clinically approved MBL inhibitors.

As a consequence of increasing variation in the �-lactamase-mediated resistance to
�-lactam antibiotics, the development of broad-spectrum inhibitors of both the SBLs
and MBLs is of considerable interest. This is presently perceived to be challenging due
to the mechanistic and structural differences between the SBLs and MBLs (Fig. 1). We
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FIG 1 (A and B) Outline mechanism of cephalosporin hydrolysis by serine-�-lactamases (A) and metallo-�-lactamases (B). The small-
molecule elements of the first tetrahedral intermediate EI1 is common to both mechanisms. (C) Chemical structures of the two cyclic
boronates used in this study. The structure of the proposed common tetrahedral intermediate in the serine and metallo-�-lactamase-
catalyzed hydrolysis of �-lactam antibiotics is shown for a cephalosporin substrate (cefalexin). We propose that the cyclic boronates mimic
this intermediate.
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have recently reported that cyclic boronates can inhibit representatives of class A, B,
and D �-lactamases (21). Cyclic boronates act as analogues of the first tetrahedral
intermediate that is common to both SBLs and MBLs (Fig. 1). Here we show that cyclic
boronates are able to inhibit all classes of �-lactamase, including the class A ESBL
CTX-M-15, the class C enzyme AmpC from Pseudomonas aeruginosa, and two
carbapenem-hydrolyzing OXA variants, OXA-23 and OXA-48. These cyclic boronates are
effective in inhibiting the growth of clinical Gram-negative bacterial strains expressing
multiple �-lactamases. Crystallographic analysis of a cyclic boronate complexed with
CTX-M-15 supports the proposal that the cyclic boronates closely mimic the first
tetrahedral intermediate in bicyclic �-lactam hydrolysis.

RESULTS
Cyclic boronate inhibition of SBLs and MBLs. To investigate the extent to which

cyclic boronates inhibit class C �-lactamases as well as the important class A ESBL and
class D carbapenemase targets, we used a fluorogenic assay (22) to screen the cyclic
boronates, which we have found to inhibit other �-lactamases (21), against them. The
�-lactamases used for screening included TEM-1 and CTX-M-15 (class A), the metallo-
�-lactamase (MBL) from Bacillus cereus (BcII), Verona integron-encoded metallo-�-
lactamase 1 (VIM-1) (class B), AmpC from P. aeruginosa (class C), and OXA-23 and
OXA-48 (class D), collectively representing all classes of �-lactamase. (For comparison
with other relevant publications, we also screened CTX-M-15, AmpC, OXA-23, and
OXA-48 with the commonly used reporter substrate nitrocefin [23] [see Table S2 in the
supplemental material].) To benchmark the potency of the cyclic boronates, we also
screened the clinically used serine-�-lactamase (SBL) inhibitors avibactam (Med-
Chemexpress LLC) (16, 24), sulbactam (25, 26), and BLI-489, a potent inhibitor of class
D enzymes (2, 27, 28). For MBLs, we used the broad-spectrum thiol-based MBL
inhibitors L-captopril (29, 30) and (racemic) thiomandelic acid (31, 32) (Tables 1 and 2)
(see Fig. S1 in the supplemental material for structures of the inhibitors). Since variations
in the rate of reaction with, at least, avibactam have been reported among the SBLs (16),
we also investigated the time courses of inhibition by these compounds over 6 h.

Both cyclic boronates 1 and 2 exhibit inhibition against all five of the SBLs tested,
with 50% inhibitory concentrations (IC50s) ranging from 250 to 2 nM (Table 1). Cyclic
boronates 1 and 2 similar inhibition potencies against TEM-1 and CTX-M-15, cyclic
boronate 2 shows around 10-fold lower IC50s than cyclic boronate 1 against AmpC
(9.8 � 0.3 nM versus 120 � 10 nM, respectively, with 10 min of preincubation), and
cyclic boronate 1 exhibits 10- to 15-fold-lower IC50s than cyclic boronate 2 against the
OXA enzymes (250 � 1 nM versus 2,600 � 100 nM after 10 min of incubation for
OXA-23 and 160 � 1 nM versus 2,600 � 200 nM after 10 min of incubation for OXA-48).
Against TEM-1 and CTX-M-15, cyclic boronates 1 and 2 show potencies similar to those
of avibactam and BLI-489, with IC50s of low nanomolar to subnanomolar levels. Against
AmpC, cyclic boronate 2 shows a potency similar to that of avibactam, while cyclic
boronate 1 exhibits up to 60-fold-lower IC50s than avibactam (9.8 � 0.3 nM and 190 �

10 nM at 10 min, respectively), with results comparable to those for BLI-489 (30 � 1 nM
at 10 min). Neither cyclic boronate 1 nor 2 was able to achieve potency comparable
with the lowest IC50s exhibited by avibactam and BLI-489 against the OXA enzymes,
with IC50s for cyclic boronate 1 being around 10- to 20-fold higher and those for cyclic
boronate 2 being around 100- to 200-fold higher.

The time dependency of inhibition was found to vary depending on the particular
inhibitor-enzyme combination examined (Table 1). Where substantial time dependency
in the inhibition was observed, the largest decrease in IC50 generally manifested over
the first 10 min of inhibition. Avibactam showed time dependency in its inhibition of
all the tested SBLs, with the lowest IC50 typically achieved after 60 or 360 min of
preincubation. The IC50s obtained with BLI-489 showed substantial time dependency
only with CTX-M-15 and AmpC, with the lowest IC50s seen after longer incubation
times, as seen with avibactam. The time dependency of inhibition by the cyclic
boronates was similar to that observed for BLI-489 (i.e., seen with CTX-M-15 and AmpC
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but not with TEM-1 or the OXA enzymes) (Table 1). For CTX-M-15, a significant increase
in the IC50s for avibactam and BLI-489 was observed between 60 and 360 min of
incubation. This may be the result of slow hydrolysis of the inhibited acyl-enzyme to
restore a small population of active enzyme.

We also screened the cyclic boronates against the model MBL, BcII, and VIM-1 using
the FC5-based fluorogenic assay (22). In all cases the inhibition of the MBLs by cyclic
boronate 2 was around 10 times more potent than that by cyclic boronate 1 (Table 2).
Cyclic boronate 1 exhibited IC50s around 2- to 5-fold lower than those seen with
L-captopril. Cyclic boronate 2 showed a potency very similar to that of thiomandelic
acid against BcII but showed 5- to 10-fold-greater potency than thiomandelic acid
against VIM-1. No time dependency of MBL inhibition by either the cyclic boronates or
the thiol-based inhibitors was observed (Table 2).

Susceptibility of clinical isolates to cyclic boronate 2. Consistent with our pre-
vious work (21), cyclic boronate 2 was observed to be a more potent inhibitor of the
isolated MBLs than cyclic boronate 1. Since potency against different types of MBLs is
a highly desirable characteristic in the design of MBL/SBL dual inhibitors, cyclic boro-
nate 2 (10 �g/ml) was thus tested in combination with a number of �-lactams against
a variety of Gram-negative clinical isolates known to produce multiple �-lactamases.
Susceptibility to the monobactam aztreonam (AZT) and cephalosporins (ceftriaxone
[CRO], ceftazidime [CAZ], and cefepime [FEP]) was either increased in or completely
restored to strains producing CTX-M-1-like (CTX-M-15 and CTX-M-27) enzymes. MICs to
ampicillin (AMP) and piperacillin (PIP) in combination with fixed ratios of clavulanic acid
(CLAV), sulbactam (SUL), and tazobactam (TAZ) were also lower for CTX-M-containing
isolates but not significantly lower in those also producing an OXA (OXA-1, OXA-181, or

TABLE 1 Time course for the inhibition of serine-�-lactamases (classes A, C, and D) by cyclic boronates 1 and 2 and established inhibitors
that act by formation of a stable acyl-enzyme complexa

Inhibitor
Preincubation
time (min)

IC50, nM (mean � SD)b for:

TEM-1 CTX-M-15 AmpC OXA-23 OXA-48

Cyclic boronate 1 0 2.6 � 0.1 92 � 6 68 � 3 220 � 1 140 � 1
10 1.3 � 0.1 13 � 1 9.8 � 0.3 250 � 1 160 � 1
30 1.6 � 0.1 3.7 � 0.1 4.5 � 0.1 260 � 1 170 � 1
60 1.5 � 0.1 1.7 � 0.1 2.6 � 0.1 270 � 1 170 � 1
360 1.7 � 0.1 4.0 � 0.01 2.4 � 0.1 730 � 2 270 � 1

Cyclic boronate 2 0 8.1 � 0.1 39 � 2 270 � 60 2,000 � 100 2,000 � 100
10 3.4 � 0.1 7.5 � 0.3 120 � 10 2,600 � 100 2,600 � 200
30 2.6 � 0.1 2.8 � 0.1 150 � 10 3,300 � 200 3,400 � 100
60 2.6 � 0.1 1.3 � 0.1 100 � 10 2,600 � 100 3,000 � 100
360 2.1 � 0.1 6.4 � 0.1 96 � 1 3,300 � 200 3,300 � 200

Sulbactam 0 860 � 80 44 � 1 �2 � 105 �2 � 105 �2 � 105

10 600 � 200 29 � 1 42,000 � 2,000 �2 � 105 �2 � 105

30 600 � 200 28 � 7 8,600 � 600 �2 � 105 �2 � 105

60 500 � 200 32.0 � 0.3 4,400 � 500 �2 � 105 �2 � 105

360 700 � 300 16.6 � 0.1 1,000 � 400 �2 � 105 �2 � 105

Avibactam 0 19 � 1 9.9 � 0.2 1,400 � 400 770 � 4 2500 � 30
10 3.4 � 0.1 1.1 � 0.1 190 � 10 390 � 1 810 � 50
30 2.2 � 0.1 0.40 � 0.06 200 � 10 160 � 2 300 � 2
60 2.0 � 0.1 0.39 � 0.01 200 � 10 71 � 1 150 � 1
360 4.3 � 0.1 6.4 � 0.1 150 � 10 13 � 1 20 � 1

BLI-489 0 4.8 � 0.2 32 � 2 210 � 20 5.6 � 0.1 14 � 1
10 2.0 � 0.1 6.9 � 0.2 30 � 1 5.6 � 0.1 15 � 1
30 1.7 � 0.2 2.2 � 0.1 12.0 � 0.4 6.2 � 0.1 16 � 1
60 1.7 � 0.1 0.94 � 0.03 5.6 � 0.1 8.6 � 0.1 22 � 1
360 1.9 � 0.1 8.0 � 0.1 1.9 � 0.1 18 � 1 49 � 1

aFC5 was used as a substrate (22).
bIC50s were taken after preincubation of the enzyme with the corresponding inhibitor for 0, 10, 30, 60, or 360 min prior to assay. IC50s were obtained from fitting of
residual activity plots using GraphPad Prism.
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OXA-23) or plasmid-borne AmpC (CMY-4) enzyme. For Enterobacteriaceae producing
MBLs, heightened activity was seen with carbapenems against VIM-4-producing Kleb-
siella pneumoniae and VIM-1-producing Providencia stuartii. There were less marked
effects on cephalosporin MICs, presumably due to coproduction of SHV- and VEB-like
ESBLs and hyperexpression of chromosomal AmpC in these isolates. In strains with
OXA-like carbapenem-hydrolyzing class D �-lactamases (CHDLs), carbapenem suscep-
tibility was increased in Escherichia coli producing the OXA-181 variant, in combination
with CTX-M-15 and CMY-4, but not against a multidrug-resistant K. pneumoniae isolate
producing the OXA-232 variant in association with CTX-M-15 and multiple other SHV
ESBLs. Of note, no significant effects of cyclic boronate 2 on the carbapenem suscep-
tibility of either VIM-2 producing P. aeruginosa or Acinetobacter baumannii with OXA-23
were seen (Table 3).

Disc diffusion screens in which cyclic boronate 2 was added in a fixed ratio against
the same strains revealed some interesting findings on its potential as an inhibitor (see
the disc diffusion test images in ths supplemental material). In Enterobacteriaceae, cyclic
boronate 2 generally enhanced the activity of PIP, AZT, cefoxitin (FOX), cefotaxime
(CTX), and CAZ in those without OXA CHDLs. The effects on carbapenems were clearly
observed for the VIM-4-producing strains at the 2:1 ratio.

13C NMR study with OXA-10. For the class D OXA enzymes, the active-site lysine
(Lys70) is carbamylated via nonenzymatic reaction with carbon dioxide (33). This
residue is critical for the activity of the enzymes and acts as a general acid/base during
�-lactam hydrolysis (34). Since the carbamylation of Lys70 is reversible, it is possible to
site-specifically label the residue with 13C, via incubation with a 13C-labeled bicarbonate
buffer. This labeling allows for changes of the active site (for example, inhibitor binding)
to be studied using nuclear magnetic resonance (NMR) (34). Using this reported
technique, we labeled the carbamylated Lys70 of OXA-10 with 13C (using NaH13CO3) in
order to monitor binding of cyclic boronate 1 within the active site of the enzyme (see
Fig. S6 in the supplemental material). Upon binding of the inhibitor, a 6-ppm shift in the
13C-labeled carbamylate signal is observed.

TABLE 2 Time course for the inhibition of metallo-�-lactamases by cyclic boronates 1 and
2 and broad-spectrum thiol-based MBL inhibitorsa

Inhibitor
Preincubation
time (min)

IC50, �M (mean � SD)b for:

BcII, pH 7.5 BcII, pH 6.5 VIM-1, pH 7.5

1 0 2.8 � 0.2 3.3 � 0.1 1 � 1
10 3.0 � 0.2 3.8 � 0.2 1 � 1.2
30 2.8 � 0.3 3.5 � 0.1 1 � 1.5
60 3.4 � 0.3 3.8 � 0.2 1.4 � 0.3
360 3.1 � 0.2 3.0 � 0.2 1.2 � 0.3

2 0 0.45 � 0.02 0.27 � 0.02 0.061 � 0.001
10 0.45 � 0.02 0.20 � 0.01 0.085 � 0.002
30 0.36 � 0.02 0.20 � 0.01 0.088 � 0.001
60 0.36 � 0.01 0.20 � 0.01 0.083 � 0.002
360 0.36 � 0.03 0.23 � 0.01 0.061 � 0.001

L-Captopril 0 13.7 � 0.3 17.4 � 0.3 1.91 � 0.06
10 21 � 1 20.4 � 0.6 2.3 � 0.2
30 12.5 � 0.5 16.8 � 0.8 2.4 � 0.2
60 14.6 � 0.4 13.7 � 0.7 2.6 � 0.1
360 15 � 1 16.3 � 0.5 2.8 � 0.2

(�)-Thiomandelic acid 0 0.30 � 0.03 0.27 � 0.06 0.38 � 0.03
10 0.39 � 0.05 0.9 � 0.1 0.45 � 0.02
30 0.33 � 0.04 0.5 � 0.1 0.8 � 0.9
60 0.5 � 0.2 2 � 1 1.4 � 0.9
360 2 � 1 2 � 1 2 � 1

aFC5 was used as a substrate (22).
bIC50s were taken after preincubation of the enzyme with the corresponding inhibitor for 0, 10, 30, 60, or
360 min prior to assay. IC50s were obtained from fitting of residual activity plots using GraphPad Prism.
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Crystal structure of cyclic boronate 2 bound to CTX-M-15. Crystal structures of
cyclic boronates 1 and 2 in complex with class B (BcII and VIM-2) and D (OXA-10) and
PBP-5 from E. coli have been reported (21); however, structural information on inhibi-
tion of the clinically important class A �-lactamases, in particular ESBLs, by cyclic
boronates has not been described. We thus worked to obtain a structure of the ESBL
CTX-M-15:cyclic boronate 1 complex, which diffracted to 1.95-Å resolution (see Table S4
in the supplemental material for crystallographic data). The structure was solved by
molecular replacement using the reported structure of the apo-enzyme (PDB accession
code 4HBT [35]) as a search model. The overall structure of the CTX-M-15:cyclic
boronate 1 complex is highly similar to that of the search model, with a root mean
square deviation (RMSD) of 0.194 Å over C� atoms. In a fashion similar to that seen in
a CTX-M-15:avibactam complex crystal structure (PDB accession code 4S2I [36]), com-
parison with the apo-enzyme reveals no remarkable changes in the positions of the
backbone or amino acid side chains upon reaction with cyclic boronate 1.

Analysis of the electron density maps clearly reveals cyclic boronate 1 as being
bound at the active site via reaction with the side chain of Ser73 (Fig. 2A). In a manner
analogous to the structures of OXA-10 and PBP-5 with cyclic boronate 2 (21) (PDB
accession codes 5FQ9 and 5J8X, respectively), the electron density map provides clear
evidence for tetrahedral coordination of the boron atom (see Fig. S7 in the supple-
mental material). Aside from the covalent reaction with Ser73, cyclic boronate 1 is
positioned to form hydrogen bonding interactions with the side chains of Lys76,
Asn107, Ser133, Asn135, Thr238, and Ser240 as well as backbone atoms of Ser73 and
Ser240 and two nearby water molecules, waters 4 (Wat4) and 116 (Wat116). In addition,
there is a hydrophobic/aromatic interaction between the side chain of Tyr108 and the
planar aromatic ring of the ligand. Interestingly, and as seen in the CTX-M-15:avibactam
complex (36), a water molecule is observed in the CTX-M-15:cyclic boronate 1 complex
which occupies the same position as the water responsible for hydrolysis of the
acyl-enzyme intermediate in CTX-M-15-catalyzed �-lactam hydrolysis, Wat4 in Fig. 2
and S6 (35).

FIG 2 The conformation of the bicyclic ring core of the cyclic boronates in complex with �-lactamases and PBPs
is conserved and mimics the tetrahedral anionic intermediate in cephalosporin hydrolysis. (A) Active-site view from
a crystal structure of the CTX-M-15:cyclic boronate 1 complex. Potential hydrogen bonding interactions are
represented by dashed lines. (B) Overlay of energy-minimized small-molecule structures of cyclic boronate 2 and
a modeled species defined by addition of a hydroxide ion onto the �-lactam carbonyl of cefalexin. Energy
minimization was carried out using the MM2 energy minimization function in ChemBio3D Ultra. (C) Overlay of our
reported (21) cyclic boronate structures in PDB entries 5FQ9 (cyan, OXA-10:cyclic boronate 1), 5FQB (magenta,
BcII:cyclic boronate 2), 5FQC (yellow, VIM-2:2), and 5J8X (orange, PBP-5:2) and our CTX-M-15:1 structure (green).
Note that there is variation in the conformations of the side chain, but that of the fused bicyclic ring system is
highly conserved in all crystal structures and is likely important for optimal binding of the cyclic boronate inhibitors.
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We then compared the conformation of cyclic boronate 1 in CTX-M-15 with those
observed in MBLs (BcII [PDB accession code 5FQB] and VIM-2 [PDB accession code
5FQC]) and OXA-10 (PDB accession code 5FQ9) as well as PBP-5 (PDB accession code
5J8X). Although there are some variations in the precise orientations of the C-7
cyclohexyl amide/aromatic acetamide side chain, the conformation of the fused bicyclic
boronate ring system is remarkably well conserved across all the structures analyzed
(Fig. 2C). In support of the proposal that the cyclic boronates mimic the first tetrahedral
intermediate in �-lactam hydrolysis, which is common in both SBL and MBL catalysis,
small-molecule energy minimization studies on cyclic boronate 2 and the tetrahedral
species produced by addition of a hydroxide ion onto the �-lactam carbonyl of
cefalexin reveal strong structural similarity between the two species.

DISCUSSION

The results reveal that cyclic boronates 1 and 2, which are based on �-lactamase
inhibitors described in patent literature (37), are able to inhibit all classes of
�-lactamase, including the important, clinically relevant ESBL CTX-M-15 and the OXA
carbapenemases, as well as AmpC from P. aeruginosa, with low micromolar to low
nanomolar IC50 ranges (Tables 1 and 2). The compounds show inhibition potencies
similar to those of avibactam against TEM-1, CTX-M-15, and AmpC. Cyclic boronate 1
was the more potent of the two cyclic boronates against the OXA enzymes but was
unable to achieve the potency of avibactam against these enzymes (16). However, the
fact that the described cyclic boronate scaffold has yet to be optimized suggests that
greater potency for cyclic boronates against the class D �-lactamases should be
possible, in line with that seen for other classes. Interestingly, NMR data acquired with
OXA-10 show that carbamylation of the active-site lysine is maintained upon binding of
cyclic boronate 1 (see Fig. S6 in the supplemental material). The observed shift of 6 ppm
is substantial compared to that observed upon binding of hydroxyisopropylpenicilla-
nates, where a shift of 0 to 0.4 ppm is observed (38). The greater shift of the 13C signal
on binding of the boronate likely reflects the different environment of the active-site
serine, being bound to an sp3 anionic boron center when complexed to cyclic boronate
1 as opposed to an sp2 carbon center in the hydroxyisopropylpenicillanate complex.

Time courses of inhibition against the SBLs reveal that time dependence of IC50 is
manifest, the magnitude of which is dependent on the enzyme-inhibitor combination
employed. This observation is consistent with potential variations in acylation rates
seen with avibactam (16) and the SBLs as well as “on-enzyme” fragmentation/cross-
linking reactions that can occur after acylation, as demonstrated, for example, in the
case of sulbactam (25, 26) and BLI-489 (39). Notably, TEM-1 and CTX-M-15 appear to
manifest differences in the time dependency of their inhibition by all five of the tested
inhibitors, as has been previously demonstrated for the response of TEM-1 and CTX-M-9
to clavulanic acid, sulbactam, and tazobactam (40), emphasizing the variation in the
properties of the �-lactamases even within the same class (5).

Cyclic boronates 1 and 2 exhibit submicromolar IC50s against the MBLs BcII and
VIM-1, with cyclic boronate 2 being the more potent compound against both enzymes.
Inhibition of BcII by cyclic boronate 2 is comparable in potency to that by thiomandelic
acid, while cyclic boronate 2 is around 10 times more potent than thiomandelic acid
against VIM-1. Avibactam is a potent inhibitor of SBLs but, notably, is hydrolyzed slowly
by some MBLs (19, 41). The time courses of cyclic boronate inhibition against the
enzymes tested demonstrated no time dependence for inhibition of the MBLs, at least
under our experimental conditions. Despite avibactam being a potent inhibitor of SBLs,
it is able to be hydrolyzed by MBLs (19), suggesting potential problems in the long-term
clinical use of avibactam (and other inhibitors working by acylation) as resistance
mediated by combinations of SBLs and MBLs become more prevalent (20). In contrast,
no �-lactamase-catalyzed turnover of the cyclic boronates has been seen (as expected),
and, to date, we have no evidence for these compounds binding to �-lactamases or
PBPs in a ring-opened fashion. This is consistent with a recent publication suggesting
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that, at least for 6-member boronate rings, the closed form is the dominant species in
solution (42).

Cyclic boronate 2 potentiated the activity of all four classes of �-lactam against
Gram-negative clinical isolates (Table 3). Coadministration of cyclic boronate 2 along-
side the clinically used SBL inhibitors clavulanic acid, sulbactam, and tazobactam was
able to further potentiate the activity of penicillins against some E. coli strains (EC107
and EC113) compared to coadministration with the SBL inhibitors alone. Cyclic boro-
nate 2 also increased the effectiveness of both cephalosporins and carbapenems
against VIM-producing K. pneumoniae strains, although this result is not apparent with
KP41, possibly due to the sheer number of �-lactamases (six) being produced. Activity
against the VIM-2-producing P. aeruginosa strain was also limited. Mechanisms of
multidrug resistance in this strain have not yet been fully elucidated, although pro-
duction of the native AmpC �-lactamase combined with upregulated efflux and
permeability lesions is likely to be involved. An increased susceptibility to ceftolozane
was a common finding regardless of the number or class of �-lactamase produced,
except in A. baumannii. Ceftolozane is a fifth-generation cephalosporin, recently de-
veloped for use in combination with tazobactam (43). The limited isolate results
presented here suggest that ceftolozane, partnered with a cyclic boronate, could be an
attractive �-lactam/inhibitor combination to pursue in the future.

A structure of the CTX-M-15:cyclic boronate 1 complex reveals a conserved mode of
binding for this inhibitor, very similar to our previously reported structures, with a
tetrahedral boron center and the closed bicyclic scaffold maintained as in our previ-
ously reported work (21). Comparison of our structure with that of CTX-M-15 in
complex with RPX-7009, a boron-based SBL inhibitor currently in phase III clinical trials
(44, 45), and a TEM-1:boronate (46) complex reveals a striking similarity in the mode of
binding for these related scaffolds (see Fig. S8 in the supplemental material). Interest-
ingly, the latter structure was interpreted as an acyclic boronate binding mode, despite
the compound being able to adopt a bicyclic conformation nearly identical to that of
our inhibitors via reaction of its phenolic oxygen with the boron center (Fig. S8C) (46).
It should be noted that, in contrast to the structural conservation observed for the cyclic
boronate complex conformations, there is considerably more variation in the structural
conformations of acyl-enzyme (and product) complexes formed by the reaction of SBLs
with �-lactams and of reported product/intermediate complexes formed from MBLs
and �-lactams (see Fig. S9 in the supplemental material) (34, 47–49). Since more
conformational flexibility might be anticipated once the �-lactam ring has been
opened, this analysis supports the proposal that the cyclic boronates best mimic the
first tetrahedral intermediate (i.e., act as “transition state” analogues).

The cyclic boronate scaffold is thus able to potently inhibit all classes of �-lactamase
by adopting an enzyme:inhibitor complex that mimics a tetrahedral intermediate in
�-lactam hydrolysis. With further optimization, cyclic boronates could form a new
family of clinically useful �-lactamase, and maybe other hydrolytic enzyme, inhibitors.
In addition to their inhibitory properties, the cyclic boronates also provide important
structural and mechanistic insights into the nature of �-lactamase:�-lactam complexes,
allowing us to build a more detailed picture of more transient species that have yet to
be structurally characterized.

With the first cyclic boronate drug, tavaborole (50), approved for clinical use in the
treatment of external fungal infections and further cyclic boronates in the pipeline as
anti-inflammatory and anti-bacterial treatments (51, 52), the use of cyclic boronates as
future drug candidates seems to be an inevitability. The ability of these molecules to
mimic tetrahedral intermediates in enzyme-catalyzed hydrolysis pathways may prove
to be highly useful in the inhibition of mechanistically diverse enzymes, as exhibited by
the ability of cyclic boronates 1 and 2 to inhibit all classes of �-lactamase, including
serine-, metallo-, or other enzymes. In addition, similar classes of compounds, such as
cyclic phosphonates, sulfonates, and sulfonamides, have yet to be extensively explored
and may prove to be a fruitful source of future inhibitors.
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MATERIALS AND METHODS
Cloning. Serine �-lactamases were amplified by direct PCR from producer bacterial strains and

expressed as N-terminal hexahistidine fusions from the T7 vector pOPINF (53). CTX-M-15 was amplified
from E. coli strain EO516 (a kind gift from Neil Woodford, Public Health England) (54), P. aeruginosa AmpC
was amplified from strain PAO1 (a kind gift from the former Pseudomonas genetic stock center, East
Carolina University) (55), and OXA-23 and OXA-48 were amplified from clinical Acinetobacter baumannii
and Klebsiella pneumoniae isolates (kind gifts from Timothy Walsh and Mark Toleman, Cardiff University).
�-Lactamase open reading frames encoding the mature polypeptides (i.e., with regions encoding the
signal peptide removed) were amplified by PCR using Phusion polymerase (New England BioLabs) and
primers as detailed in Table S1 in the supplemental material. PCR products were cloned into the pOPINF
T7 expression vector (53), linearized at the KpnI and HindIII sites using the InFusion recombinase system
(Clontech) (56), and transformed into E. coli Stellar (Clontech), and positive clones were selected by
blue-white screening. Recombinant plasmids were purified and sequenced (Eurofins Genomics) to
confirm identity with published sequences and that no mutations had been introduced during the
cloning procedure. The resulting expression constructs encode (exclusive of vector-derived amino acid
residues) mature �-lactamase sequences starting at residues 29 (CTX-M-15), 27 (AmpC), 18 (OXA-23), and
22 (OXA-48).

Enzyme production. Recombinant CTX-M-15, AmpC, OXA-23, and OXA-48, each with an N-terminal
His tag, were produced in E. coli BL21(DE3) cells using autoinduction medium supplemented with 50
�g/ml ampicillin. Cells were grown for 4 h at 37°C before cooling to 18°C and continuing growth
overnight. Cells were harvested by centrifugation (10 min, 10,000 � g), resuspended in 50 ml lysis buffer
(50 mM HEPES [pH 7.5], 500 mM NaCl, 5 mM imidazole), supplemented with DNase I, and lysed by
sonication. The supernatant was loaded onto a 5-ml HisTrap HP column, followed by extensive washing
with 50 mM HEPES (pH 7.5)–500 mM NaCl–5 mM imidazole before elution with a 20 to 500 mM imidazole
gradient. Fractions containing purified enzyme were concentrated by centrifugal ultrafiltration (Amicon
Ultra [Millipore]; 15 ml, 10,000 molecular weight cutoff). The resultant solution was injected onto a
Superdex S200 column (300 ml) and eluted with 50 mM HEPES (pH 7.5)–200 mM NaCl. Fractions
containing pure His-tagged enzyme were incubated overnight at 4°C with His-tagged 3C protease (1:100,
wt/wt) to remove the N-terminal His tag. The 3C protease together with any uncleaved protein in the
digestion mixture was removed by use of a second HisTrap HP column preequilibrated with 50 mM
HEPES (pH 7.5)–500 mM NaCl–20 mM imidazole. Purified enzyme fractions, as identified by SDS-PAGE,
were pooled and concentrated by centrifugal ultrafiltration before buffer exchange into 25 mM HEPES
(pH 7.5)–100 mM NaCl. The concentrations of the purified proteins were determined using a NanoDrop
ND-1000 spectrophotometer (Thermo Scientific; � � 25,440, 61,310, 43,430, and 63,940 M�1 cm�1 for
CTX-M-15, AmpC, OXA-23, and OXA-48, respectively).

Recombinant TEM-1 (57) with an N-terminal His tag, VIM-1 (58) with a 3C-cleaved C-terminal His tag,
and OXA-10 (59) were produced as previously described. The concentrations of the purified proteins
were determined using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific; (� � 27,960, 29,910,
and 48,930 M�1 cm�1 for TEM-1, VIM-1, and OXA-10, respectively).

13C labeling of OXA-10 enzyme. The 13C labeling of carbamylated lysine was based on a protocol
in the literature (34). Purified OXA-10 enzyme was dialyzed first overnight against degassed 25 mM
sodium acetate (pH 4.5)– 0.1 mM EDTA and then overnight against 50 mM sodium phosphate (pH
7.4)– 0.1 mM EDTA–1 mM NaH13CO3 (Sigma-Aldrich). The enzyme was then dialyzed overnight against 50
mM sodium phosphate (pH 7.4)– 0.1 mM EDTA–10 mM NaH13CO3, aliquoted, and frozen using liquid N2.

Inhibition assays. Inhibition assays were carried out using FC5 as a fluorogenic reporter substrate
(22). Enzyme concentrations and buffers were the same as those employed in steady-state kinetic studies
(see Table S2 in the supplemental material). TEM-1, BcII, and VIM-1 were screened at 1 nM, 500 pM, and
125 pM, respectively. The concentration of FC5 employed was 10 �M for TEM-1 and 5 �M for all other
enzymes. IC50s were determined by preincubating the enzyme with the inhibitor in the assay buffer at
room temperature for 10, 30, 60, or 300 min prior to the addition of substrate. Data at 0 min of incubation
were obtained by addition of enzyme to a premixed solution of inhibitor and substrate. Residual enzyme
activity was determined for a range of inhibitor concentrations. Nonlinear regression fitting of IC50 curves
was carried out using a three-parameter dose-response curve in GraphPad Prism. Errors in IC50 are
expressed as [�(log IC50)/log IC50)] � IC50.

Antimicrobial susceptibility testing. The in vitro activity of cyclic boronate 2 was assessed using
nine clinical isolates carrying multiple �-lactamases (Table 3). The isolates selected included Enterobac-
teriaceae (E. coli ST 131, Klebsiella pneumoniae ST 258, and Providencia stuartii) producing class A ESBLs
(CTX-M-15, CTX-M-27, SHV-5, and VEB-1), serine carbapenemase (KPC-2) and metallo-carbapenemases
(VIM-1 and VIM-2), plasmid-mediated AmpC (CMY-2), and/or carbapenem-hydrolyzing OXA-48-like oxa-
cillinases (OXA-181 and OXA-232) in various combinations. The activity against carbapenemase-
producing strains of Pseudomonas aeruginosa (VIM-2) and Acinetobacter baumannii (OXA-23) was also
investigated. All isolates have previously undergone extensive phenotypic and genotypic characteriza-
tion (60).

Bacterial susceptibility to �-lactams and standard �-lactam inhibitor (clavulanic acid [CLAV], sulbac-
tam [SUL], and tazobactam [TAZ]) combinations was determined by broth microtiter dilution (BMD)
according to the Clinical and Laboratory Standards Institute (CLSI) methodology (61). MICs were
determined using commercial Sensititre GN4F panels (Thermo Scientific, UK; lot B55051) and Mueller-
Hinton II cation-adjusted broth (Oxoid, UK), with and without the addition of cyclic boronate 2 at a fixed
concentration of 10 �g/ml. Plates were incubated at 37°C for 18 h and MICs read by eye following the
addition of alamarBlue reagent (Trek Diagnostics).
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The inhibitory effects of cyclic boronate 2 on susceptibility to 19 diverse �-lactam compounds was
also assessed in Kirby-Bauer disc diffusion tests. Combination discs (Oxoid) were prepared with a fixed
ratio of 2:1 between the �-lactam (�g) and cyclic boronate 2. Zones of inhibition around combined and
unsupplemented discs were compared following overnight incubation on MH II plates.

NMR spectroscopy. 13C NMR experiments used a Bruker AVIII 600 MHz spectrometer equipped with
a Prodigy broadband cryoprobe. Spectra were acquired at 298 K using a standard Bruker 13C pulse
sequence. The experimental parameters used were as follows: 2,048 scans, 36,058-Hz spectral width, 2.0-s
relaxation delay, and 65,536 data points. A line broadening of 10 Hz was applied to all spectra. NMR
samples contained 560 �M OXA-10 and 10 mM NaH13CO3 and were supplemented with 10% D2O. The
impact of cyclic boronate 1 was tested at a concentration of 5 mM.

Crystallization, X-ray data collection, and processing. Crystallization experiments were set up
using a 13 mg/ml solution of CTX-M-15 in 50 mM HEPES (pH 7.5)–100 mM NaCl supplemented with 10
mM cyclic boronate 1. Crystallization was performed at room temperature using sitting-drop vapor
diffusion methods. Crystals were obtained after 2 days using 100 �l of 100 mM HEPES (pH 7.5)–70%
2,4-methylpentanediol in the reservoir and a 1:2 mixture (1 �l:2 �l) of protein to reservoir solution in the
crystallization drop. Crystals were cryoprotected using 25% glycerol in reservoir solution before harvest-
ing with nylon loops and flash-cooling in liquid nitrogen. Diffraction data were collected at 100 K using
a Rigaku FRE� Superbright diffractometer. Diffraction data were integrated and scaled using HKL3000
(62). The structure was solved by molecular replacement with Phaser (63) using a published structure
(PDB accession code 4HBT [35]) as a search model. The structure was then fit and refined iteratively using
PHENIX and Coot (64, 65).

Structural energy minimization. Energy minimization of small-molecule structures was performed
using the MM2 energy minimization function in ChemBio3D Ultra (66).

Accession number(s). Coordinates and structure factors have been deposited in the Protein Data
Bank with accession number 5T66.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
AAC.02260-16.

TEXT S1, PDF file, 1.1 MB.

ACKNOWLEDGMENTS
We thank the Biotechnology and Biological Sciences Research Council (grant BB/

J014427/1) and the Medical Research Council/Canadian (grant G1100135) and the MRC
SWON Alliance for funding our work.

We declare no conflict of interest.

REFERENCES
1. Versporten A, Bolokhovets G, Ghazaryan L, Abilova V, Pyshnik G,

Spasojevic T, Korinteli I, Raka L, Kambaralieva B, Cizmovic L, Carp A,
Radonjic V, Maqsudova N, Celik HD, Payerl-Pal M, Pedersen HB,
Sautenkova N, Goossens H. 2014. Antibiotic use in Eastern Europe: a
cross-national database study in coordination with the WHO regional
office for Europe. Lancet Infect Dis 14:381–387. https://doi.org/
10.1016/S1473-3099(14)70071-4.

2. Drawz SM, Bonomo RA. 2010. Three decades of �-lactamase inhibitors.
Clin Microbiol Rev 23:160 –201. https://doi.org/10.1128/CMR.00037-09.

3. Bush K, Jacoby GA. 2010. Updated functional classification of
�-lactamases. Antimicrob Agents Chemother 54:969 –976. https://
doi.org/10.1128/AAC.01009-09.

4. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Mo-
lecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51.
https://doi.org/10.1038/nrmicro3380.

5. Majiduddin FK, Materon IC, Palzkill TG. 2002. Molecular analysis of
beta-lactamase structure and function. Int J Med Microbiol 292:127–137.
https://doi.org/10.1078/1438-4221-00198.

6. Massova I, Mobashery S. 1998. Kinship and diversification of bacterial
penicillin-binding proteins and �-lactamases. Antimicrob Agents Che-
mother 42:1–17. https://doi.org/10.1093/jac/42.1.1.

7. Joris B, Ghuysen JM, Dive G, Renard A, Dideberg O, Charlier P, Frère JM,
Kelly JA, Boyington JC, Moews PC, et al. 1988. The active-site-serine
penicillin-recognizing enzymes as members of the Streptomyces R61
DD-peptidase family. Biochem J 250:313–324. https://doi.org/10.1042/
bj2500313.

8. Joris B, Ledent P, Dideberg O, Fonzé E, Lamotte-Brasseur J, Kelly JA,
Ghuysen JM, Frère JM. 1991. Comparison of the sequences of class A
beta-lactamases and of the secondary structure elements of penicillin-

recognizing proteins. Antimicrob Agents Chemother 35:2294 –2301.
https://doi.org/10.1128/AAC.35.11.2294.

9. Paterson DL, Bonomo RA. 2005. Extended-spectrum �-lactamases: a
clinical update. Clin Microbiol Rev 18:657– 686. https://doi.org/10.1128/
CMR.18.4.657-686.2005.

10. Pitout JDD, Laupland KB. 2008. Extended-spectrum �-lactamase-
producing Enterobacteriaceae: an emerging public-health concern.
Lancet Infect Dis 8:159 –166. https://doi.org/10.1016/S1473-3099
(08)70041-0.

11. Cantón R, Coque TM. 2006. The CTX-M �-lactamase pandemic. Curr Opin
Microbiol 9:466 – 475. https://doi.org/10.1016/j.mib.2006.08.011.

12. Evans BA, Amyes SGB. 2014. OXA �-lactamases. Clin Microbiol Rev
27:241–263. https://doi.org/10.1128/CMR.00117-13.

13. Reading C, Cole M. 1977. Clavulanic acid: a beta-lactamase-inhibiting
beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Che-
mother 11:852– 857. https://doi.org/10.1128/AAC.11.5.852.

14. Yang Y, Rasmussen BA, Shlaes DM. 1999. Class A �-lactamases—
enzyme-inhibitor interactions and resistance. Pharmacol Ther 83:
141–151. https://doi.org/10.1016/S0163-7258(99)00027-3.

15. Zhanel GG, Lawson CD, Adam H, Schweizer F, Zelenitsky S, Lagace-Wiens
PR, Denisuik A, Rubinstein E, Gin AS, Hoban DJ, JPLynch 3rd, Karlowsky
JA. 2013. Ceftazidime-avibactam: a novel cephalosporin/beta-lactamase
inhibitor combination. Drugs 73:159 –177. https://doi.org/10.1007/
s40265-013-0013-7.
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