72 research outputs found

    Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N-acetyltransferase 1 (NAT1) and 2 (NAT2) are polymorphic isoenzymes responsible for the metabolism of numerous drugs and carcinogens. Acetylation catalyzed by NAT1 and NAT2 are important in metabolic activation of arylamines to electrophilic intermediates that initiate carcinogenesis. Inflammatory bowel diseases (IBD) consist of Crohn's disease (CD) and ulcerative colitis (UC), both are associated with increased colorectal cancer (CRC) risk. We hypothesized that <it>NAT1 </it>and/or <it>NAT2 </it>polymorphisms contribute to the increased cancer evident in IBD.</p> <p>Methods</p> <p>A case control study was performed with 729 Caucasian participants, 123 CRC, 201 CD, 167 UC, 15 IBD dysplasia/cancer and 223 controls. <it>NAT1 </it>and <it>NAT2 </it>genotyping were performed using Taqman based techniques. Eight single nucleotide polymorphisms (SNPs) were characterized for <it>NAT1 </it>and 7 SNPs for <it>NAT2</it>. Haplotype frequencies were estimated using an Expectation-Maximization (EM) method. Disease groups were compared to a control group for the frequencies at each individual SNP separately. The same groups were compared for the frequencies of <it>NAT1 </it>and <it>NAT2 </it>haplotypes and deduced NAT2 phenotypes.</p> <p>Results</p> <p>No statistically significant differences were found for any comparison. Strong linkage disequilibrium was present among both the <it>NAT1 </it>SNPs and the <it>NAT2 </it>SNPs.</p> <p>Conclusion</p> <p>This study did not demonstrate an association between <it>NAT1 </it>and <it>NAT2 </it>polymorphisms and IBD or sporadic CRC, although power calculations indicate this study had sufficient sample size to detect differences in frequency as small as 0.05 to 0.15 depending on SNP or haplotype.</p

    A fibril-specific, conformation-dependent antibody recognizes a subset of Aβ plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain

    Get PDF
    Beta-amyloid (Aβ) is thought to be a key contributor to the pathogenesis of Alzheimer disease (AD) in the general population and in adults with Down syndrome (DS). Different assembly states of Aβ have been identified that may be neurotoxic. Aβ oligomers can assemble into soluble prefibrillar oligomers, soluble fibrillar oligomers and insoluble fibrils. Using a novel antibody, OC, recognizing fibrils and soluble fibrillar oligomers, we characterized fibrillar Aβ deposits in AD and DS cases. We further compared human specimens to those obtained from the Tg2576 mouse model of AD. Our results show that accumulation of fibrillar immunoreactivity is significantly increased in AD relative to nondemented aged subjects and those with select cognitive impairments (p < 0.0001). Further, there was a significant correlation between the extent of frontal cortex fibrillar deposit accumulation and dementia severity (MMSE r = −0.72). In DS, we observe an early age of onset and age-dependent accumulation of fibrillar OC immunoreactivity with little pathology in similarly aged non-DS individuals. Tg2576 mice show fibrillar accumulation that can be detected as young as 6 months. Interestingly, fibril-specific immunoreactivity was observed in diffuse, thioflavine S-negative Aβ deposits in addition to more mature neuritic plaques. These results suggest that fibrillar deposits are associated with disease in both AD and in adults with DS and their distribution within early Aβ pathology associated with diffuse plaques and correlation with MMSE suggest that these deposits may not be as benign as previously thought

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultra-short-period planet (Sanchis-ojeda et al. 2014; Winn et al. 2018). All of the previously known ultra-short-period planets are either hot Jupiters, with sizes above 10 Earth radii (Re), or apparently rocky planets smaller than 2 Re. Such lack of planets of intermediate size (the "hot Neptune desert") has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet with a radius of 4.6 Re and a mass of 29 Me, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star \starname\, every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(-2.9)% of the total mass. With an equilibrium temperature around 2000 K, it is unclear how this "ultra-hot Neptune" managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (Vmag=9.8)

    Genomic and oncoproteomic advances in detection and treatment of colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers.</p> <p>Methods</p> <p>An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library.</p> <p>Results</p> <p>Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment.</p> <p>Conclusion</p> <p>If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.</p

    eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR

    Get PDF
    Background: Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. Results: Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5′UTR of target mRNAs directly upstream of the AUG start codon. Conclusions: Our data support a model whereby purine motifs towards the 3′ end of the 5′UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding

    Neoadjuvant treatment of pancreatic adenocarcinoma: a systematic review and meta-analysis of 5520 patients

    Full text link

    Effect of Fuel Price on Aviation Technology and Environmental Outcomes

    No full text
    corecore