261 research outputs found

    Constrained Superfields and Standard Realization of Nonlinear Supersymmetry

    Full text link
    A constrained superfield formalism has been proposed recently to analyze the low energy physics related to Goldstinos. We prove that this formalism can be reformulated in the language of standard realization of nonlinear supersymmetry. New relations have been uncovered in the standard realization of nonlinear supersymmetry.Comment: 8+1 pages, Latex, expanded discussions on scalar and vector field

    On the S-wave piD-scattering length in the relativistic field theory model of the deuteron

    Full text link
    The S-wave scattering length of the strong pion-deuteron (pi D) scattering is calculated in the relativistic field theory model of the deuteron suggested in [1,2].The theoretical result agrees well with the experimental data. The important role of the Delta-resonance contribution to the elastic pi D-scattering is confirmed.Comment: 7 pages, no figures, accepted for publication in Z. Phys.

    Nonlinear Realization of Spontaneously Broken N=1 Supersymmetry Revisited

    Full text link
    This paper revisits the nonlinear realization of spontaneously broken N=1 supersymmetry. It is shown that the constrained superfield formalism can be reinterpreted in the language of standard realization of nonlinear supersymmetry via a new and simpler route. Explicit formulas of actions are presented for general renormalizable theories with or without gauge interactions. The nonlinear Wess-Zumino gauge is discussed and relations are pointed out for different definitions of gauge fields. In addition, a general procedure is provided to deal with theories of arbitrary Kahler potentials.Comment: 1+18 pages, LaTe

    Very special relativity as relativity of dark matter: the Elko connection

    Get PDF
    In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM(2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM(2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.Comment: 19 pages. Section 5 is new. Published version (modulo a footnote, and a corrected typo

    Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions

    Full text link
    We study fermions coupled to Yang-Mills matrix models from the point of view of emergent gravity. The matrix model Dirac operator provides an appropriate coupling for fermions to the effective gravitational metric for general branes with nontrivial embedding, albeit with a non-standard spin connection. This generalizes previous results for 4-dimensional matrix models. Integrating out the fermions in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the Poisson tensor to the Riemann tensor, and a dilaton-like term.Comment: 34 pages; minor change

    Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance

    Get PDF
    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.Comment: 45 pages, no figures

    Neutron Electric Dipole Moment Constraint on Scale of Minimal Left-Right Symmetric Model

    Full text link
    Using an effective theory approach, we calculate the neutron electric dipole moment (nEDM) in the minimal left-right symmetric model with both explicit and spontaneous CP violations. We integrate out heavy particles to obtain flavor-neutral CP-violating effective Lagrangian. We run the Wilson coefficients from the electroweak scale to the hadronic scale using one-loop renormalization group equations. Using the state-of-the-art hadronic matrix elements, we obtain the nEDM as a function of right-handed W-boson mass and CP-violating parameters. We use the current limit on nEDM combined with the kaon-decay parameter ϔ\epsilon to provide the most stringent constraint yet on the left-right symmetric scale MWR>(10±3) M_{W_R} > (10 \pm 3) TeV.Comment: 20 pages and 8 figure

    Galileons as Wess-Zumino Terms

    Full text link
    We show that the galileons can be thought of as Wess-Zumino terms for the spontaneous breaking of space-time symmetries. Wess-Zumino terms are terms which are not captured by the coset construction for phenomenological Lagrangians with broken symmetries. Rather they are, in d space-time dimensions, d-form potentials for (d+1)-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to the unbroken symmetry group. We introduce the galileon algebras and construct the non-trivial (d+1)-form co-cycles, showing that the presence of galileons and multi-galileons in all dimensions is counted by the dimensions of particular Lie algebra cohomology groups. We also discuss the DBI and conformal galileons from this point of view, showing that they are not Wess-Zumino terms, with one exception in each case.Comment: 49 pages. v2 minor changes, version appearing in JHE

    Weinberg like sum rules revisited

    Get PDF
    The generalized Weinberg sum rules containing the difference of isovector vector and axial-vector spectral functions saturated by both finite and infinite number of narrow resonances are considered. We summarize the status of these sum rules and analyze their overall agreement with phenomenological Lagrangians, low-energy relations, parity doubling, hadron string models, and experimental data.Comment: 31 pages, noticed misprints are corrected, references are added, and other minor corrections are mad
    • 

    corecore