351 research outputs found

    Recent advances in understanding dominant spinocerebellar ataxias from clinical and genetic points of view [version 1; referees: 3 approved]

    Get PDF
    Abstract Spinocerebellar ataxias (SCAs) are rare types of cerebellar ataxia with a dominant mode of inheritance. To date, 47 SCA subtypes have been identified, and the number of genes implicated in SCAs is continually increasing. Polyglutamine (polyQ) expansion diseases (ATXN1/SCA1, ATXN2/SCA2, ATXN3/SCA3, CACNA1A/SCA6, ATXN7/SCA7, TBP/SCA17, and ATN1/DRPLA) are the most common group of SCAs. No preventive or curative treatments are currently available, but various therapeutic approaches, including RNA-targeting treatments, such as antisense oligonucleotides (ASOs), are being developed. Clinical trials of ASOs in SCA patients are already planned. There is, therefore, a need to identify valid outcome measures for such studies. In this review, we describe recent advances towards identifying appropriate biomarkers, which are essential for monitoring disease progression and treatment efficacy. Neuroimaging biomarkers are the most powerful markers identified to date, making it possible to reduce sample sizes for clinical trials. Changes on brain MRI are already evident at the premanifest stage in SCA1 and SCA2 carriers and are correlated with CAG repeat size. Other potential biomarkers have also been developed, based on neurological examination, oculomotor study, cognitive assessment, and blood and cerebrospinal fluid analysis. Longitudinal studies based on multimodal approaches are required to establish the relationships between parameters and to validate the biomarkers identified

    Evaluating the Feasibility and Impact of a Well-being Retreat for Physicians and Advanced Practice Providers

    Get PDF
    Introduction: Work stress experienced by physicians and advanced practice providers (APPs) can have a detrimental psychological and physical impact. Targeted interventions that focus on self-awareness, peer connection, and intentional self-care may reduce stress and improve well-being and professional fulfillment. Methods: This is a summative program evaluation of a two-day well-being retreat for physicians and APPs employed at a healthcare system headquartered in Florida. Led by mental health professionals in May 2022, this retreat combined facilitator-led workshops and experiential practice activities with opportunities for peer connection and designated time with family members. The retreat objectives were to facilitate social support, improve knowledge in areas of self-care, and build reflection skills that lead to intentional changes in well-being. Data collection occurred immediately before and after the intervention in May 2022. Wilcoxon Signed Ranks Tests were conducted to examine pre-post differences in the outcomes of self-reflection and insight, mindful self-care, anxiety, perceived stress, and professional fulfillment. Post-program feedback was collected, synthesized, and described. Results: Twenty-one clinicians attended the retreat, and a self-selected sample of twelve attendees participated in the evaluation portion of the project. Perceived stress significantly decreased (19.00 vs. 15.92; p = 0.01), and professional fulfillment significantly improved (15.50 vs. 17.50; p = 0.04) following the retreat. Participants reported the following benefits of the retreat: a reminder to focus on self-care, motivation for healthy behavior change, and an opportunity to self-reflect. Conclusion: Findings suggest that the retreat intervention met its objectives, and there is preliminary evidence that it may be a feasible approach to improve well-being and reduce stress in physicians and APPs. While significant changes in the practice environment are necessary to address the causes and consequences of work stress, individual-level programs remain important and relevant to the protection of well-being. This project builds upon the literature about interventions with diverse modalities

    Altered Intracortical T1-Weighted/T2-Weighted Ratio Signal in Huntington’s Disease

    Get PDF
    Huntington’s disease (HD) is a genetic neurodegenerative disorder that is characterized by neuronal cell death. Although medium spiny neurons in the striatum are predominantly affected, other brain regions including the cerebral cortex also degenerate. Previous structural imaging studies have reported decreases in cortical thickness in HD. Here we aimed to further investigate changes in cortical tissue composition in vivo in HD using standard clinical T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance images (MRIs). 326 subjects from the TRACK-HD dataset representing healthy controls and four stages of HD progression were analyzed. The intracortical T1W/T2W intensity was sampled in the middle depth of the cortex over 82 regions across the cortex. While these previously collected images were not optimized for intracortical analysis, we found a significant increase in T1W/T2W intensity (p < 0.05 Bonferroni-Holm corrected) beginning with HD diagnosis. Increases in ratio intensity were found in the insula, which then spread to ventrolateral frontal cortex, superior temporal gyrus, medial temporal gyral pole, and cuneus with progression into the most advanced HD group studied. Mirroring past histological reports, this increase in the ratio image intensity may reflect disease-related increases in myelin and/or iron in the cortex. These findings suggest that future imaging studies are warranted with imaging optimized to more sensitively and specifically assess which features of cortical tissue composition are abnormal in HD to better characterize disease progression

    Altered Intracortical T1-Weighted/T2-Weighted Ratio Signal in Huntington’s Disease

    Get PDF
    Huntington’s disease (HD) is a genetic neurodegenerative disorder that is characterized by neuronal cell death. Although medium spiny neurons in the striatum are predominantly affected, other brain regions including the cerebral cortex also degenerate. Previous structural imaging studies have reported decreases in cortical thickness in HD. Here we aimed to further investigate changes in cortical tissue composition in vivo in HD using standard clinical T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance images (MRIs). 326 subjects from the TRACK-HD dataset representing healthy controls and four stages of HD progression were analyzed. The intracortical T1W/T2W intensity was sampled in the middle depth of the cortex over 82 regions across the cortex. While these previously collected images were not optimized for intracortical analysis, we found a significant increase in T1W/T2W intensity (p < 0.05 Bonferroni-Holm corrected) beginning with HD diagnosis. Increases in ratio intensity were found in the insula, which then spread to ventrolateral frontal cortex, superior temporal gyrus, medial temporal gyral pole, and cuneus with progression into the most advanced HD group studied. Mirroring past histological reports, this increase in the ratio image intensity may reflect disease-related increases in myelin and/or iron in the cortex. These findings suggest that future imaging studies are warranted with imaging optimized to more sensitively and specifically assess which features of cortical tissue composition are abnormal in HD to better characterize disease progression

    Critical Roles for Anterior Insula and Dorsal Striatum in Punishment-Based Avoidance Learning

    Get PDF
    SummaryThe division of human learning systems into reward and punishment opponent modules is still a debated issue. While the implication of ventral prefrontostriatal circuits in reward-based learning is well established, the neural underpinnings of punishment-based learning remain unclear. To elucidate the causal implication of brain regions that were related to punishment learning in a previous functional neuroimaging study, we tested the effects of brain damage on behavioral performance, using the same task contrasting monetary gains and losses. Cortical and subcortical candidate regions, the anterior insula and dorsal striatum, were assessed in patients presenting brain tumor and Huntington disease, respectively. Both groups exhibited selective impairment of punishment-based learning. Computational modeling suggested complementary roles for these structures: the anterior insula might be involved in learning the negative value of loss-predicting cues, whereas the dorsal striatum might be involved in choosing between those cues so as to avoid the worst

    Neuroendocrine Disturbances in Huntington's Disease

    Get PDF
    BACKGROUND: Huntington's disease (HD) is a severe inherited neurodegenerative disorder characterized, in addition to neurological impairment, by weight loss suggesting endocrine disturbances. The aims of this study were to look for neuroendocrine disturbances in patients with Huntington's disease (HD) and to determine the relationship with weight loss seen in HD METHODS AND FINDING: We compared plasma levels of hormones from the five pituitary axes in 219 patients with genetically documented HD and in 71 sex- and age-matched controls. Relationships between hormone levels and disease severity, including weight-loss severity, were evaluated. Growth hormone (GH) and standard deviation score of insulin-like growth factor 1 (SDS IGF-1) were significantly higher in patients than in controls (0.25 (0.01-5.89) vs. 0.15 (0.005-4.89) ng/ml, p = 0.013 and 0.16+/-1.02 vs. 0.06+/-0.91, p = 0.039; respectively). Cortisol was higher (p = 0.002) in patients (399.14+/-160.5 nmol/L vs. 279.8+/-130.1 nmol/L), whereas no differences were found for other hormone axes. In patients, elevations in GH and IGF-1 and decreases in thyroid-stimulating hormone, free triiodothyronine and testosterone (in men) were associated with severity of impairments (Independence scale, Functional score, Total Functional Capacity, Total Motor score, Behavioral score). Only GH was independently associated with body mass index (beta = -0.26, p = 0.001). CONCLUSION: Our data suggest that the thyrotropic and in men gonadotropic axes are altered in HD according to the severity of the disease. The somatotropic axis is overactive even in patients with early disease, and could be related to the weight loss seen in HD patients

    Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study.

    Get PDF
    BACKGROUND: Macro- and micro-structural neuroimaging measures provide valuable information on the pathophysiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of microstructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two. METHODS: 40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which modality and metrics provided a statistically significant advantage over others. RESULTS: Macrostructural measures showed decreased regional and global volume in HD (p < 0.001); except the ventricles which were enlarged (p < 0.01). In HD, FA was increased in the deep grey-matter structures (p < 0.001), and decreased in the WM (CC, p = 0.035; WM, p = 0.053); diffusivity metrics (MD, RD, AD) were increased for all brain regions (p < 0.001). The largest effect sizes were for putamen volume, caudate volume and putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (p < 0.05). CONCLUSION: The highest performing macro- and micro-structural metrics had similar sensitivity to HD pathology quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to be relatively insensitive to disease effects
    • 

    corecore