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SUMMARY

The division of human learning systems into reward
and punishment opponent modules is still a debated
issue. While the implication of ventral prefrontostria-
tal circuits in reward-based learning is well estab-
lished, the neural underpinnings of punishment-
based learning remain unclear. To elucidate the
causal implication of brain regions that were related
to punishment learning in a previous functional neu-
roimaging study, we tested the effects of brain
damage on behavioral performance, using the
same task contrasting monetary gains and losses.
Cortical and subcortical candidate regions, the ante-
rior insula and dorsal striatum, were assessed in
patients presenting brain tumor and Huntington
disease, respectively. Both groups exhibited selec-
tive impairment of punishment-based learning. Com-
putational modeling suggested complementary roles
for these structures: the anterior insula might be
involved in learning the negative value of loss-pre-
dicting cues, whereas the dorsal striatum might be
involved in choosing between those cues so as to
avoid the worst.

INTRODUCTION

Learning to avoid potential harms is essential for survival. A

substantial part of avoidance learning is based on the experience

of punishments following mistakes. Theoretically, punishment-

based learning can be modeled with the same computations

as reward-based learning. A standard computational solution

consists of using prediction errors to update the values on which

choices are based (Sutton and Barto, 1998). Biologically, the

question of whether reward and punishment learning rely on
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a same, common system or on distinct, opponent systems is still

debated. A large body of evidence has implicated the ventral

prefrontostriatal circuits in encoding reward cues and outcomes

(Rutledge et al., 2010; Palminteri et al., 2009a; Hare et al., 2008).

Many anatomo-functional models of reward learning share the

idea that reward prediction errors (obtained minus expected

reward) are encoded in dopamine signals that reinforce cortico-

striatal synapses (Bar-Gad and Bergman, 2001; Frank et al.,

2004; Doya, 2002). The same mechanism could account for

punishment learning: dips in dopamine release might weaken

approach circuits and/or strengthen avoidance circuits. This is

consistent with numerous studies showing that dopamine

enhancers improve reward learning, but impair punishment

learning in patients with Parkinson’s disease (Frank et al.,

2004; Bódi et al., 2009; Palminteri et al., 2009b). It has been

suggested that another neuromodulator, serotonin, could play

an opponent role: it would encode punishment prediction errors

(obtained minus expected punishment) so as to reinforce the

avoidance pathway (Daw et al., 2002). However, this hypothesis

has been challenged by several empirical studies in monkeys

and humans (McCabe et al., 2010; Palminteri et al., 2012;

Miyazaki et al., 2011).

Beyond neuromodulation, the existence of opponent regions,

which would process punishments as the ventral prefrontal

cortex and striatum process reward, remains controversial. In

humans, fMRI studies of reinforcement learning have yielded

inconsistent results. At the cortical level, several candidates for

an opponent punishment system have been suggested, among

which the anterior insula emerged as particularly prominent.

Indeed, the anterior insula was found to represent cues predict-

ing primary punishments, such as electric shocks, fearful

pictures, or bad tastes, and these punishments themselves

(Büchel et al., 1998; Seymour et al., 2004; Nitschke et al.,

2006). These findings have been later extended to more abstract

aversive events, such as financial loss or risk (Kuhnen and Knut-

son, 2005; Samanez-Larkin et al., 2008; Kim et al., 2011, 2006).

However, some studies have also found insular activation linked
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Figure 1. Behavioral Task

Subjects selected either the upper or lower of two abstract visual cues pre-

sented on a display screen by pressing (‘‘go’’) or not (‘‘no go’’) the space bar of

a laptop. They subsequently observed the outcome. In the top examples, the

upper cues are chosen (‘‘go’’ responses), but please note that a given cue

appeared in the upper or lower position randomly, so that themotor dimension

(‘‘go’’ versus ‘‘no go’’) was orthogonal to the value dimension (‘‘good’’ versus

‘‘bad’’). In the example displayed on the top, the chosen cue is associated with

0.8/0.2 probability of winning 1V/nothing (gain condition, good cue). In the

bottom example, the chosen cue is associated with 0.8/0.2 probability of

losing 1V/nothing (loss condition, bad cue). Durations of the successive

screens are given in milliseconds.
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to positive reinforcers and orbitofrontal activation linked to nega-

tive reinforcers (O’Doherty et al., 2001; Gottfried and Dolan,

2004; Kirsch et al., 2003). The functional opponency between

ventral prefrontal cortex and anterior insula, in learning to predict

reward versus punishment, is therefore far from established. At

the striatal level, many fMRI studies have reported activations

related to primary or secondary reinforcers during instrumental

learning (O’Doherty et al., 2003; Galvan et al., 2005; Pessiglione

et al., 2008; Daw et al., 2011). Again, some studies supported the

idea that the same regions encode both reward and punish-

ments cues or outcomes, whereas other studies argued for

a functional dissociation between ventral and dorsal regions

(Jensen et al., 2003; Delgado et al., 2000; O’Doherty et al.,

2004; Seymour et al., 2007). Thus, while striatum implication in

reinforcement learning is indisputable, intrastriatal functional

segregation between reward and punishment processing

remains to be demonstrated.

Some limitations inherent to fMRI might explain the discrep-

ancies in the literature investigating reward and punishment

learning. Because of limited spatial resolution, fMRI activations

might confound the activities of neuronal populations encod-

ing distinct, or even opposite, features of the environment.

Moreover, the relationship between spiking activity and

blood-oxygen-level-dependent signal is not straightforward.

In particular, fMRI activation could result from either excitatory

or inhibitory signal at the neural level, which may confound

punishment and reward encoding. Finally, it remains unclear

whether a brain region that activates with reward and deacti-

vates with punishment is involved in reward learning specifi-

cally or in both reward and punishment learning. Here we

address the existence of an opponent avoidance system by
testing the effect of brain damage on punishment-learning

versus reward-learning ability. Showing impaired behavior

following brain damage enables conclusions to be made

about the causal implication of specific brain regions. This is

particularly important for brain areas involved in emotional pro-

cessing, like the insula, which may represent epiphenomenal

reactions that are not causally responsible for producing the

behavior.

Another source of confusion comes from the fact that

signaling negative values often occur together with implement-

ing inhibition or avoidance behavior. Thus, a brain structure

responding to negative cues may not be involved in punish-

ment-based learning, but instead in selecting an action to

avoid negative outcome. Here, we use computational model-

ing to distinguish deficits in reinforcement learning and action

selection. Finally, some confusion may have arisen from tasks

testing punishment learning in a separate condition and in-

forming subjects that their goal is to avoid punishments. This

could shift the frame for outcomes such that not being

punished becomes rewarding and hence recruits reward

instead of punishment areas. Here we employ a task that

mixes reward and punishment learning such that subjects

experience both positive and negative outcomes throughout

the experiment.

This task (Figure 1) has been previously used for an fMRI

study to investigate the effects of dopaminergic medication on

instrumental learning (Pessiglione et al., 2006). It involves

subjects choosing between two cues to either maximize mone-

tary gains (for reward cues) or minimize monetary losses (for

punishment cues). In the previous study, we showed that dopa-

minergic drugs (levodopa and haloperidol) specifically modulate

reward learning, not punishment learning. The aim of the

present study is to find brain structures in which lesions would

induce the reverse dissociation, impairing punishment learning

while leaving reward learning unaffected. Candidates were

identified from the previous fMRI results (Figure 2, step 1).

Two brain regions were specifically involved in the loss condi-

tion: the anterior insula (AI), which was activated in response

to both punishment cues and outcomes, and the caudate

nucleus (dorsal striatum [DS]), which was only responsive to

punishment cues. In contrast, the ventromedial prefrontal

cortex (VMPFC) and ventral striatum (VS) were activated in

response to reward cues and outcomes. We therefore looked

for pathological conditions affecting specifically the AI (not the

VMPFC) and the DS (not the VS). For cortical areas, we turned

to brain tumors (gliomas) and compared patients with AI

damage (INS group) to patients with control lesions elsewhere

(LES group). For striatal regions, we turned to Huntington

disease and compared presymptomatic patients (PRE group),

in whom degeneration is limited to the DS, with symptomatic

patients (SYM group), in whom degeneration reaches the VS

as well (Douaud et al., 2006; Tabrizi et al., 2009). Two groups

of healthy controls (CON) matched to each pathological group

of interest (INS and PRE) were also included in the study. All

groups performed the exact same instrumental learning task

used in the previous fMRI study (Pessiglione et al., 2006) and

were tested for an asymmetry between reward- and punish-

ment-based learning.
Neuron 76, 998–1009, December 6, 2012 ª2012 Elsevier Inc. 999
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Figure 2. Experimental Design

Functional ROI were identified on the basis of

a previous fMRI study of instrumental learning

(Pessiglione et al., 2006). Gain-related cues and

outcomes activated the VS and VMPFC, whereas

loss-related cues and outcomes activated the DS

and AI. Patients were selected to assess the

effects of specific damage to loss-related regions.

For AI, we compared patients with brain lesion

over the insula (INS) to patients with lesion else-

where (LES), whereas for DS, we compared

patients at the presymptomatic versus symp-

tomatic stage of Huntington disease (PRE versus

SYM HD). Functional activations are shown at a

threshold of p < 0.001 uncorrected with a

minimum of 60 contiguous voxels and super-

imposed onto subjects’ average anatomical scan.

Brain damage is expressed in percentage of

volume overlapping with the glioma or in per-

centage of gray matter loss compared to HD

healthy relatives (control group). Error bars

represent intersubject SEM. *p < 0.05, paired

t test; ns: not significant.
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RESULTS

Brain Damage Delineation
Cortical and striatal regions of interest (ROI) were based on a re-

analysis of previous fMRI data (Pessiglione et al., 2006), focusing

on the placebo group (n = 13) to avoid biases due to pharmaco-

logical manipulation. The different cues and outcomes (gain,

neutral, and loss) were modeled with separate regressors in

a general linear model (GLM). Regression coefficients (betas)

were then contrasted and tested for significance at the group

level (with a voxel threshold of p < 0.001 uncorrected and

a cluster threshold of p < 0.05 after family-wise error (FWE)

correction for multiple comparisons). Gain-predicting cues,

compared to neutral or loss-predicting cues, elicited activity in

the VMPFC, VS, and posterior cingulate cortex. The same

regions were also activated at the outcome onset when winning

compared to getting nothing. These results support the implica-

tion of ventral prefrontostriatal circuitry in reward-based decision

and learning. The bilateral AI and bilateral DS (head of caudate
1000 Neuron 76, 998–1009, December 6, 2012 ª2012 Elsevier Inc.
nucleus) were more activated in

response to loss versus neutral cue

display. At the time of outcome display,

losing compared to getting nothing was

associated with activations in the bilat-

eral AI and in the anterior cingulate

cortex, but not in the DS. These results

suggest that, while the AI might be

involved in both punishment-based deci-

sion and learning phases, the DS might

be involved in punishment-based deci-

sion only.

We verified that patient test groups

(but not control groups) presented

damage to the selected functional ROI

(AI and DS; see Figure 2, step 2). Among
patients with glioma, the AI, relative to VMPFC, was specifically

lesioned in the INS group (38.2 ± 9.1 versus 0.9 ± 0.5 cm3: t13 =

4.1, p < 0.01; paired t test), but remained entirely intact in the LES

group. Among patients with Huntington disease (HD), DS gray

matter density was preferentially reduced relative to VS in the

PRE group (14.2% ± 2.9% versus 11.4% ± 2.8%: t13 = 1.9,

p < 0.05; paired t test), but not in the SYM group (21.8% ±

2.5% versus 22.7% ± 3.0%; t16 = 0.6, p > 0.1; paired t test).

These results validate our selection of patient test groups (INS

and PRE) as showing preferential damage in punishment-related

functional ROI and our selection of patient control groups as pre-

senting intact (LES) or equally atrophic (SYM) reward- and

punishment-related areas. We also assessed atrophy in the AI

ROI, since insular degeneration has been documented in HD

patients (Tabrizi et al., 2009). We found that the AI was unaf-

fected in PRE patients (�0.2% ± 3.8%; t13 = 0.5, p > 0.1, paired

t test), but significantly atrophic in SYM patients (8.2% ± 3.3%;

t16 = 2.5, p < 0.05, paired t test). We hereafter provide

more details about the anatomical localization of brain damage
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(A) Overlap map of individual lesions normalized

ontoananatomical template. Top line:patientswith

INS. Bottom line: patients with control LES. The

color code indicates thenumberof overlaps in each

voxel. The regions that were lesioned in all patients

(n = 7 for each hemisphere) of the INS group are

also shown (in red, middle line). The y coordinates

of coronal slices refer to the MNI space.

(B) Lesion volume in the two patient groups (INS

and LES) for each brain lobe. Error bars represent

intersubject SEM. *p < 0.05, two-sample t test.

Neuron

Avoidance Learning System in the Human Brain
in the different patient groups, independently of functional

activations.

Regarding patients with brain tumors (gliomas), we computed

an overlap map of individual lesions normalized onto an anatom-

ical template (Figure 3A). Patients were split into the INS (n = 14)

and LES (n = 9) groups, depending on whether their lesions

affected the insula or not. In the INS group, themaximumof over-

lap (n = 7 for each hemisphere) specifically covered the insular

lobe. Note that, because lesions were unilateral, the greatest

possible overlapwith the bilateral functional AI ROI is 50%.Other

areaswere also damaged in the frontal (11.7 ± 2.2 cm3), temporal

(12.5 ± 4.0 cm3), and parietal (2.7 ± 1.5 cm3) lobe. However, for

each lobe, the volume of these extrainsular lesions in the INS

group was similar or lesser than in the LES group (Figure 3B).

Thus the only brain area that was more damaged in the INS

compared to the LES group was the insula (11.9 ± 0.6 versus

0.6 ± 0.4 cm3, t20 = 12.9, p < 0.001, two-sample t test).

Regarding patients with HD, we used voxel-based morphom-

etry (VBM) analysis to quantify cerebral atrophy, using the same

statistical threshold (p < 0.001 uncorrected with an extent
Neuron 76, 998–1009, D
threshold of 60 contiguous voxels) as

for the functional activation analysis

described above. Carriers of the HD

mutation (>36 CAG repeats in the HTT

gene) were split into PRE (n = 14) and

SYM (n = 17) groups, depending on

whether their motor symptoms, evaluated

by the Unified Huntington’s Disease

Rating Scale (UHDRS) scores, were

smaller or bigger than 5/124. A group of

healthy relatives (CON, n = 14) was also

included in the VBM analysis. An

ANOVA was performed on individual

gray matter density maps with group

(CON, PRE, and SYM) as the main factor

of interest. The main effect of group was

a significant atrophy in the basal ganglia

(Figure 4A), more precisely in the bilateral

anterior parts of the putamen, caudate,

and pallidum, as well as in the amygdala

and thalamus. Within these regions, we

performed post hoc t tests to compare

groups two by two. Compared to the
CONgroup, the PRE group showed a significant atrophy specific

to the bilateral caudate (Figure 4A). Compared to the PRE group,

the SYM group showed a significant atrophy in the ventral parts

of the anterior putamen and pallidum, as well as in the amygdala

and thalamus (Figure 4A). The observed pattern of neurodegen-

eration is therefore consistent with previous studies reporting

a dorsoventral gradient of striatal gray matter loss in HD (Douaud

et al., 2006; Tabrizi et al., 2009). Thus our whole brain analysis

confirmed that the dorsoventral gradient is pronounced in

presymptomatic, but attenuated in more advanced stages of

the disease. This observation was further supported by direct

comparison between anatomically defined ROI (Figure 4B): the

caudate nucleus was more atrophic than the ventral striatum in

PRE patients (15.2% ± 2.9% versus 11.0% ± 2.8%; t13 = 2.5,

p < 0.05, paired t test), but not in SYM patients (23.7% ± 3.2%

versus 21.8% ± 2.7%; t16 = 1.0, p > 0. 1, paired t test).

Behavioral Analysis
All subjects were able to learn over the 30 trials of a learning

session the correct response, which was choosing the most
ecember 6, 2012 ª2012 Elsevier Inc. 1001
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Figure 4. Atrophy Delineation in Patients with Huntington Disease

(A) Statistical parametric maps represent themain effect of group (left column),

the comparison of PRE to CON patients (middle column), and the comparison

of SYM to PRE patients. Areas colored in a gray-to-black gradient on sagittal

glass brains and in a red-to-white gradient on coronal slices showed signifi-

cant gray matter reduction (p < 0.001 uncorrected with a minimum of 60

contiguous voxels). [x y z] coordinates of maxima refer to the MNI space.

(B) ROI analysis of HD patients atrophy. Left: ROI are illustrated on a coronal

slice. Right: percentage of gray matter loss compared to HD relatives

(control group) for each group and ROI. Error bars represent intersubject SEM.

*p < 0.05, paired t test; ns: not significant.

Figure 5. Learning Curves

Trial-by-trial average choices are illustrated for the two conditions (green: gain;

red: loss) in the different groups (healthy controls [CON], INS, LES, PRE, and

SYM). Colored areas represent observed choices (mean ± SEM); bold lines

represent modeled choices.
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rewarding cue in the gain condition and avoiding the most pun-

ishing cue in the loss condition (Figure 5). The difference

between average percentage of correct choices in the gain

and loss conditions, which we termed the reward bias, was

compared between groups using ANOVA (Figure 6).

Testing the impact of glioma, we found a significant group

effect on the reward bias (F2,40 = 4.7, p < 0.05). Post hoc compar-

isons using two-sample t tests showed that the reward bias

was higher in the INS group compared to both CON (t32 = 3.0,

p < 0.01) and LES (t21 = 2.0, p < 0.05) groups. In fact, paired

t tests demonstrated a significant reward bias in the INS group

(t13 = 4.5, p < 0.001), but not in the CON and LES groups (t19 =

1.2, p > 0.1 and t8 = 1.0, p > 0.1). The group effect on the reward

bias was driven by a significant group effect on punishment

learning (F2,40 = 3.2; p < 0.05), contrasting with an absence of

group effect on reward learning (F2,40 = 0.4; p > 0.5). Post hoc

comparisons showed that punishment learning was significantly

impaired in INS patients relative to both CON (t32 = 2.1, p < 0.05)

and LES patients (t21 = 1.9, p < 0.05), with no difference between

CON and LES groups (t27 = 0.1, p > 0.5). To control for lateraliza-

tion of brain damage, we compared punishment-learning perfor-

mance between right- and left-lesioned patients: there was no

significant difference (t12 = 0.1, p > 0.5). To control for size, we

regressed punishment-learning performance against lesion

volume: there was no significant correlation (R2 = 0.03, p > 0.5).
1002 Neuron 76, 998–1009, December 6, 2012 ª2012 Elsevier Inc.
Testing the impact of HD, the ANOVA performed on the reward

bias showed a significant group effect (F2,42 = 4.6; p < 0.05). Post

hoc two-sample t tests showed that the reward bias was higher

in the PRE group compared to both CON (t26 = 3.4, p < 0.01) and

SYM (t26 = 1.7, p < 0.05) groups. Paired t tests demonstrated

a significant reward bias in the PRE group (t13 = 4.8, p <

0.001), but not in the CON and SYM groups (t13 = 0.6, p > 0.1

and t16 = 1.3, p > 0.1). Again, the reward bias effect was driven

by a significant group effect on punishment learning (F2,42 =

3.8; p < 0.05), contrasting with an absence of significant group

effect on reward learning (F2,42 = 2.1; p > 0.1). Compared to

CON patients, post hoc t tests showed a significant reduction

of punishment learning in both PRE (t26 = 1.8, p < 0.05) and

SYM (t29 = 2.7, p < 0.01) patients, but no significant difference



Figure 6. Behavioral Analysis

Behavioral performance (% of correct responses) is illustrated for the two

conditions (green: gain; red: loss) in the different groups (CON, INS, LES, PRE,

and SYM). The reward bias is the difference between gain and loss conditions.

Error bars represent intersubject SEM. *p < 0.05, two-sample t test.
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between PRE and SYMgroups (t29 = 0.8, p > 0.1). However, SYM

patients showed a significant reduction in reward learning

compared to PRE patients (t29 = 1.8, p < 0.05) or compared to

PRE and CON groups pooled together (t29 = 1.8, p < 0.05).

This difference was still significant when including treatment as

a covariate and therefore was not due to neuroleptics impeding

reward learning. There was a trend toward reward learning

impairment with neuroleptics, but this was not significant (medi-

cated: 69.7% ± 6.3%, unmedicated: 75.0% ± 9.1% of correct

responses; t13 = 0.5, p > 0.1, two-sample t test). We also tested

direct Pearson’s correlation of learning performance with gray

matter density extracted for each patient from group-level

caudate ROI (i.e., from the significant cluster obtained in

PRE < CON contrast; see Figure 4A). The correlation was

marginally significant for the punishment condition (R2 = 0.41;

p < 0.07), but not for the reward condition (R2 = 0.15; p > 0.2).

In summary, we found an asymmetry in favor of reward-based

relative to punishment-based learning specifically in patients

with anterior insula lesion (INS group) and in patients with dorsal

striatum atrophy (PRE group).

Computational Analysis
The observed deficits in punishment learning needed further

characterization, as obviously the average percentage of correct

responses does not assess learning dynamics. We analyzed

learning dynamics inmore details by fitting a standardQ-learning

model (Sutton and Barto, 1998) to the observed choices (Fig-

ure 5). The model combines the Rescorla–Wagner learning
rule, which updates chosen option values in proportion to reward

prediction errors, and a softmax decision rule, which estimates

choice probability as a sigmoid function of the difference

between the two option values. Fitting the model to learning

curves means adjusting the free parameters to maximize the

likelihood of the observed choices. This was done separately

for the gain and loss conditions in each subject. Then the

adjusted free parameters, namely the learning rate (a), choice

randomness (b), and reinforcement magnitude (R), were system-

atically tested for group effect using ANOVA (Figure 7).

Regarding the glioma groups, there was no significant effect in

the gain condition (aG: F2,40 = 0.3, p > 0.5; bG: F2,40 = 0.2, p > 0.5;

RG: F2,40 = 0.4, p > 0.5). In the loss condition, we found a signifi-

cant group effect for the reinforcement magnitude (RL: F2,40 =

3.2; p < 0.05), but not for the learning rate (aL: F2,40 = 0.0,

p > 0.5) or choice randomness (bL: F2,40 = 0.6, p > 0.5). Post

hoc comparisons using two-sample t tests found that, in the

INS group, the RL was significantly reduced compared to CON

(t32 = 2.3, p < 0.05) and LES (t21 = 2.3, p < 0.05) groups.

Regarding HD patients, the same ANOVA revealed no signifi-

cant group effect for any parameter estimate in the gain condi-

tion (aG: F2,42 = 0.1, p > 0.5; bG: F2,42 = 0.1, p > 0.5; RG: F2,42 =

1.8, p > 0.1). In the loss condition, the only significant effect

was found for choice randomness (bL: F2,42 = 4.2; p < 0.05),

not for learning rate (aL: F2,42 = 0.6; p > 0.5) or reinforcement

magnitude (RL: F2,42 = 1.4; p > 0.1). Post hoc t tests showed

that, relative to the CON group, bL was significantly higher in

both PRE and SYM groups, (t26 = 1.8, p < 0.05 and t26 = 2.7,

p < 0.01). In the gain condition, the only significant difference

was a higher RG in the PRE compared to the SYM group (t29 =

1.7, p < 0.05).

In summary, the computational analysis indicated that the

observed punishment-based learning deficit was specifically

captured by a lower reinforcement magnitude (RL) parameter in

the INS group and by a higher choice randomness (bL) parameter

in the PRE group. In order to statistically assess that the affected

parameter depended on the site of brain damage, we ran an

ANOVA with group (INS and PRE) as a between-subject factor

and effect (reduction in RL and 1/bL relative to controls) as

a within-subject factor. Crucially, we found a significant group

by effect interaction (F1,26 = 4.4, p < 0.05), supporting the idea

that different computational parameters were affected in the

INS and PRE groups.

DISCUSSION

Here we tested the performance of brain-damaged patients with

an instrumental learning task that involves both learning option

values and choosing the best option. Behavioral results indicate

that both damage to the AI and degeneration of the DS specifi-

cally impair punishment avoidance, leaving reward obtainment

unaffected. Computational analyses further suggest that AI

damage affects the learning process (updating punishment

values), whereas DS damage affects the choice process (avoid-

ing the worst option).

The instrumental learning task used to demonstrate this disso-

ciation has several advantages. A first advantage is that money

offers comparable counterparts for reward and punishments,
Neuron 76, 998–1009, December 6, 2012 ª2012 Elsevier Inc. 1003



Figure 7. Computational Analysis

Adjusted free parameters (b: choice randomness;

a: learning rate, R: reinforcement magnitude) are

illustrated for the two conditions (green: gain; red:

loss) in the different groups (CON, INS, LES, PRE,

and SYM). Error bars represent intersubject SEM.

*p < 0.05, two-sample t test.

Neuron

Avoidance Learning System in the Human Brain
contrary to the reinforcements used in animal conditioning, such

as fruit juice and air puff (Ravel et al., 2003; Joshua et al., 2008;

Morrison and Salzman, 2009). However, the well-known

phenomenon of loss aversion (Tversky and Kahneman, 1992;

Tom et al., 2007) suggests that financial punishment may have

more impact than financial reward of the same amount. This

effect would go against our finding that punishment learning

was deficient in patients. Reciprocally, it could be argued that

losses had less impact because patients were not playing with

their own real money. It is important to note here that double

dissociations between outcome valence and dopaminergic

medication have been obtained with virtual money or even with

points (Frank et al., 2004; Bódi et al., 2009; Palminteri et al.,

2009b). This suggests that instrumental learning performance

is sensitive enough to virtual gains and losses, even if real money

might elicit stronger responses in some subjects. Another

advantage of the task is that reward and punishment conditions

arematched in difficulty, as the same probabilistic contingencies

were to be learned. Onemay nonetheless argue that punishment

avoidance involves an extra step, since subjects must select the
1004 Neuron 76, 998–1009, December 6, 2012 ª2012 Elsevier Inc.
other option in addition to avoid choosing

the worst one. Also, in reward learning,

subjects get more reinforcement as

soon as they select the correct response,

whereas in punishment learning they get

less reinforcement. This would support

the idea that punishment avoidance is

more difficult and hence more sensitive

to brain damage. However, we found

the reversedissociation,meaninga selec-

tive effect on reward learning, in the exact

same task with dopaminergic drugs (Pes-

siglione et al., 2006). Thus a difference in

sensitivity is unlikely to explain the selec-

tive effects of AI and DS damage on

punishment learning. It remains nonethe-

less possible that, once subjects have

learned the valence of symbols, they re-

frame their expectations such that neutral

outcomes become punishing in the gain

condition and rewarding in the loss

condition. However, this should have

blurred the difference between reward

and punishment conditions and therefore

contributed to diminish, not induce, the

asymmetry that we observed in our data.

The same instrumental learning task

was used in a previous fMRI study that

we reanalyzed to identify candidate
regions (AI and DS) for underpinning punishment-based learning

and avoidance. We benefited from the rare opportunity to test

damage to these ROI in hospitalized patients. Indeed, the

Pitié-Salpêtrière hospital contains a neurosurgery ward capable

of removing glioma located around the anterior insula, which

presents difficulties due to the proximity of Broca’s area (Jones

et al., 2010). Also, our hospital is a national reference center for

Huntington disease that participates in the international multi-

centric longitudinal study Track-HD (Tabrizi et al., 2009). To our

knowledge, avoidance learning ability had never been investi-

gated in patients with insular lesion (INS) nor HD. We checked

that tumoral masses overlapped with functional AI in INS

patients and that neural atrophy overlapped with functional DS

in presymptomatic HD patients. Naturally this overlap was only

partial, meaning that functional ROI were not entirely destroyed

and that other regions were also attained, which may complicate

the attribution of punishment avoidance deficits to selective

anatomical structures. Insular damage (INS patients) was unilat-

eral, covering almost 40% of the functional AI, which was

bilateral. Striatal degeneration (PRE patients) was bilateral, but
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limited to 15%of the functional DS. In both cases, it remains diffi-

cult to state what proportion of the ROI remained truly functional.

The fact that we did observe the expected deficits suggests the

ROI were significantly impaired, even if not entirely. The pres-

ence of brain damage outside the functional ROI raises the

question of specificity, which we addressed by including control

pathological conditions. We verified that, in both groups of

interest (INS and PRE), functional punishment-related regions

were more affected than functional reward-related regions,

namely the ventromedial prefrontal cortex and ventral striatum.

These groups therefore allowed testing the existence of oppo-

nent structures at both cortical level with glioma and subcortical

level with HD. Each group of interest was compared both to

healthy controls and to patients who presented similar lesions,

except that punishment-related ROI were not preferentially

affected. Thus, the observed deficits can be attributed to punish-

ment-related ROI, perhaps not specifically to the clusters acti-

vated in fMRI analyses, but at least to anatomically defined AI

and DS.

Computational analyses revealed distinct deficits in INS and

PRE patients. The flattened punishment-learning curve following

AI damage in INSpatientswas specifically captured by a reduced

reinforcement magnitude in the loss condition. This means that

not only learning was slowed down, but also the asymptotic

plateau was lower. It can be distinguished from a change in

learning rate, which would only affect how fast the plateau is

reached. This computational result suggests that AI damage

attenuated not only signaling of aversive outcomes, but also

signaling of aversive cues. This is consistent with our previous

neuroimaging findings that the AI was responsive to both aver-

sive outcome display (during learning period) and aversive cue

display (during choice period). It is also more generally consis-

tent with a number of neuroimaging studies that implicated the

anterior insula in signaling aversive events (Büchel et al., 1998;

Seymour et al., 2004; Nitschke et al., 2006; Samanez-Larkin

et al., 2008; Kim et al., 2006, 2011). In our original fMRI analysis,

as in some other fMRI studies (Kim et al., 2006; Seymour et al.,

2004; Pessiglione et al., 2006), the AI was found to encode

more precisely punishment prediction errors (received minus

expected punishments) at the time of outcome. This is also

consistent with the present computational result, as reducing

reinforcement magnitude in the loss condition is one way to

diminish punishment prediction error signal. Thus signaling

punishment prediction error following outcome might be the

computational mechanism by which the AI causally impacts

negative value learning. At the time of choice, the AI might signal

cue negative value (i.e., punishment prediction), which could

drive avoidance behavior. This is in line with theories proposing

that brain areas involved in somatic affective representations are

causally responsible for making a choice (Jones et al., 2010;

Naqvi and Bechara, 2009; Craig, 2003).

The flattened punishment-learning curves following DS prefer-

ential atrophy in presymptomatic HD patients was specifically

captured by a higher choice randomness. Contrary to reinforce-

ment magnitude and learning rate, this parameter impacts the

choice, not the learning process. This is consistent with our

fMRI finding that the DS was active at punishment cue display

(during choice period), but not at outcome display (during
learning period). It accords well with the idea that the DS is the

‘‘actor’’ part of the striatum, the ‘‘critic’’ part being more ventral

(O’Doherty et al., 2004; Atallah et al., 2007). Indeed, the transition

from presymptomatic to symptomatic HD, which was character-

ized by degeneration extending to the VS, was captured by

a lower reinforcement magnitude in the gain condition. Thus

the VS, which is closely linked to the VMPFC, would play a role

similar to that of the insula, but for learning positive instead of

negative values. This is in line with studies implicating the VS

and VMPFC in encoding both reward predictions at cue display

and reward prediction errors at outcome display (Rutledge et al.,

2010; Palminteri et al., 2009a; Hare et al., 2008). However, inter-

preting the specific role of the DS in choosing between aversive

cues remains speculative. The link with choice randomness

might suggest that the DS is involved in comparing negative

value estimates or in integrating the precision of these estimates,

or in adjusting the balance between exploration and exploitation.

Another possibility is that the DS is specifically involved in avoid-

ance behavior, i.e., in inhibiting the selection of the worst option

and facilitating the selection of alternatives. This interpretation is

endorsed by the observation that input connections to the

caudate head come from dorsal prefrontal structures, which

have been implicated in inhibitory and executive processes (Dra-

ganski et al., 2008; Haber, 2003; Postuma and Dagher, 2006).

In conclusion, we found evidence that the AI and DS are caus-

ally implicated in punishment-based avoidance learning, but for

different reasons. The AI might participate by signaling punish-

ment magnitude, in accordance with its involvement in negative

affective reactions, whereas the DS might participate by imple-

menting avoidance choices, in accordance with its involvement

in executive processes. These findings suggest the existence

of a distinct punishment system underpinning avoidance

learning, just as the reward system underpins approach learning.

However, we only tested two candidate regions here; further

research is needed to circumscribe this putative punishment

system. Two promising candidates are the amygdala, which

has been involved in encoding negative emotions, including

when losing money (Yacubian et al., 2006; De Martino et al.,

2010; Schlund and Cataldo, 2010), and the anterior cingulate

cortex, which is frequently coactivated with the AI when subjects

experience negative affective states, also including monetary

losses (Blair et al., 2006; Petrovic et al., 2008; Kahnt et al., 2009).

EXPERIMENTAL PROCEDURES

Behavioral Task

We employed here the same task as that previously used for an fMRI study

(Pessiglione et al., 2006), except that pounds were changed into euros, that

English was translated into French, and that, in order to shorten the experi-

ment, subjects performed only two test sessions after one full training session.

Subjects were provided with written instructions, which were reformulated

orally when necessary, asking them to try and maximize their financial payoff

(see Figure 1; Supplemental Information available online). Each session was an

independent task containing three new pairs of cues to be learned. Cues were

abstract visual stimuli taken from the Agathodaimon alphabet. Each pair of

cues was presented 30 times for a total of 90 trials. The three cue pairs corre-

sponded to the three conditions (gain, neutral, and loss), which were respec-

tively associated with different pairs of outcomes (winning 1V versus nothing,

looking at 1V versus nothing, and losing 1V versus nothing). Within each pair,

the two cues were associated to the two possible outcomes with reciprocal
Neuron 76, 998–1009, December 6, 2012 ª2012 Elsevier Inc. 1005
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probabilities (0.8/0.2 and 0.2/0.8). Note that there was no financial outcome

associated with the neutral cue, for which the euro coin could be looked at,

but not won or lost. On each trial, one pair was randomly presented and the

two cues were displayed on a computer screen above and below a central

fixation cross, their relative position being counterbalanced across trials.

The subject was required to choose the upper stimulus by pressing the space

bar (‘‘go’’ response) or the lower stimulus by retaining from pressing any button

(‘‘no go’’ response) within a 4 s delay. Please note that, since the position on

screen was counterbalanced, response (go versus no go) and value (good

versus bad cue) were orthogonal. After the 4 s delay, the chosen cue was

circled in red and then the outcome (either ‘‘nothing,’’ ‘‘gain,’’ ‘‘look,’’ or

‘‘loss’’) was displayed on the screen. In order to win money, subjects had to

learn by trial and error the cue–outcome associations, so as to choose the

most rewarding cue in the gain condition and the less punishing cue in the

loss condition.

Regions of Interest

To identify ROI, we reanalyzed, using SPM8 software, the fMRI data acquired

for a previous published study (Pessiglione et al., 2006) that investigated the

effects of dopaminergic drugs on instrumental learning. Please refer to this

publication for details about image acquisition and preprocessing. To avoid

drug-induced biases, we only analyzed here the data from the 13 subjects

who were assigned to the placebo group in the original study. Individual

time-series were analyzed using a general linear model that included separate

regressors for the different events and conditions. Two events were consid-

ered in every trial, cue, and outcome onset, which were modeled with a delta

function. There were three different conditions for cues: gain, neutral, and loss.

There were six different types of outcomes: winning £1 or getting nothing in the

gain condition, looking at £1 or getting nothing in the neutral condition, and

losing £1 or getting nothing in the loss condition. We then computed

between-cues and between-outcomes linear contrasts to identify brain

regions specifically implicated in gain and loss processing. Individual

contrasts were taken to a group-level random-effect analysis using one-

sample t tests. Activations reported here survived a cluster-forming threshold

of p < 0.001 (uncorrected), with an extent threshold of 60 contiguous voxels to

ensure significance of p < 0.05 after family-wise error correction for multiple

comparisons over the whole brain.

To verify that our patients constituted valid models of lesions in the targeted

ROI, we built mask images by taking the intersection between functional clus-

ters significantly activated in the relevant contrasts and anatomical areas

delineated with MARINA software. The VMPFCmask was defined as the inter-

section between the contrast of gain-predicting versus loss-predicting cues

and an anatomical template composed of the orbital parts of the superior,

middle, and inferior frontal gyri, as well as the gyrus rectus, olfactory cortex,

and anterior cingulate cortex (all bilateral). The VS mask was defined as the

intersection between the contrast of gain-predicting versus neutral cues, the

contrast of £1 versus £0 outcomes, and an anatomical template, including

the bilateral putamen and caudate nuclei. The DS mask was defined as the

intersection between the contrast of loss-predicting versus neutral cues and

the same anatomical template for the bilateral putamen and caudate nuclei.

The AI mask was defined as the intersection between the contrast of loss-pre-

dicting versus neutral cues, the contrast of the �£1 versus £0 outcomes, and

an anatomical template, including the bilateral insula.

Subjects

The study was approved by the ethical committee of the Pitié-Salpêtrière

Hospital, where the study took place. In total we tested 88 subjects:

34 controls and 54 patients (23 with brain tumors and 31 with Huntington

disease). Most healthy controls were relatives accompanying patients to

the hospital. All subjects gave written informed consent prior to inclusion in

the study. They were not paid for their voluntary participation and were

told that the money won in the task was purely virtual. Previous studies have

shown that using real money is not mandatory to obtain robust motivational

or conditioning effects (Frank et al., 2004; Palminteri et al., 2009b). In our

case, using real money would be unethical, since it would mean penalizing

patients for their handicap. See Table S1 for detailed clinical and demograph-

ical data.
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Brain Tumors

Patients were hospitalized either for a biopsy, in order to determine the nature

of the tumor (n = 5), or for the surgical ablation of the tumor (n = 18). Tumors

were gliomas in all patients but one, in whom the tumor was metastatic. The

precise glioma types were (grades are given following the World Health Orga-

nization classification): 12 oligoastrocytomas (grade 2: n = 7; grade 3: n = 5),

three oligodendrogliomas (all grade 2), two astrocytomas (grade 2 for one

and grade 3 for the other), one pilocytic astrocytoma (grade 1), and two glio-

blastomas (grade 4). For twogliomas, the precise type could not be determined

(one was grade 2 and the other grade 3). A majority of patients (15/23) were

under preventive antiepilepticmedication because of a history of tumor-related

seizure. No patient was taking any medication interfering with the dopami-

nergic system, such as neuroleptics. Patients were tested 29 ± 13 (mean ±

SEM) months after the onset of clinical symptoms and 24 ± 12 months after

theMRI or computed tomography scan that had confirmed the diagnosis of tu-

moral mass present in the brain. Patients were split according to whether the

lesion overlapped with the insula (INS group: n = 14) or not (LES group: n =

9). Tumor etiology was globally matched between the two groups, with similar

grades (INS: 2.4 ± 0.2; LES: 2.1 ± 0.2; p > 0.3, t test) and a similar proportion of

oligoastrocytomas (INS: 8/14; LES: 4/9; p > 0.4, chi2-test). We also checked

that lesion sizes were comparable between the two groups (INS: 76.6 ± 10.8;

LES: 92.0 ± 22.0; p > 0.5, t test). A cohort of healthy subjects was also included

(CON group; n = 20). These subjects were matched to INS patients in age

(CON: 43.6 ± 2.8; INS: 46.7 ± 3.9; p > 0.5, t test), gender (CON: 12/8; INS:

9/5; p > 0.7, chi2-test), and handedness (CON: 16/4; INS: 11/3; p > 0.9,

chi2-test). There was no cognitive impairment in the INS group, as indicated

by the normal Mini-Mental State (MMS) score (29.3 ± 0.6). INS patients were

not depressed (Hospital Anxiety and Depression [HAD] depression score:

4.9 ± 0.7), but moderately anxious (HAD anxiety score: 8.2 ± 1.2). Unfortu-

nately, the MMS and HAD scores were only collected for a minority of LES

patients (4/9), in whom they were similar to those obtained in the INS group

(MMS: 30.0 ± 0.0; HAD depression: 4.5 ± 2.4; HAD anxiety: 10.3 ± 2.9).

Delineation of Brain Lesion

All lesioned patients but one had a high-definition three-dimensional anatom-

ical T1 MRI scan and a fluid attenuated inversion recovery T2 MRI scan. The

scans were acquired on average 39.6 ± 23.6 days before the experiment.

Based on both T1 and T2 scans, the tumoral masses were manually

segmented on the native anatomical space using MRIcro (http://www.

cabiatl.com). The T1 scans were normalized to an anatomical template with

the Statistical Parametric Mapping software (SPM8: http://www.fil.ion.ucl.

ac.uk/spm/software/spm8/) running on Matlab (http://www.mathworks.

com). The resulting images were carefully checked one by one to ensure

that the lesion did not perturb the normalization process. The same transfor-

mations computed to normalize T1 scans were then applied to the corre-

sponding lesion images. Overlap maps were built by summing the lesion

images separately for the two patient groups (INS and LES). To analyze the

spatial distribution of lesions, we built anatomical masks of the insular, frontal,

parietal, temporal, and occipital lobes based on the automatic anatomic

labeling atlas (AAL), as implemented by the MARINA software (http://www.

bion.de). We quantified the volume of the intersections between individual

lesion images and every anatomical mask. We then compared these volumes

between INS and LES patients using two-sample t tests. To verify that the

glioma selectively impacted our functional ROI, we calculated the percentage

of voxels within the AI and VMPFC masks overlapping with the lesion images

and compared this overlap between ROI in each group (INS and LES) using

paired t tests.

Huntington Disease

We included 45 subjects participating in the Paris site of the Track-HD study,

a multicentric research protocol that has been designed to study the early

stages of HD (Tabrizi et al., 2009). Among these subjects, 31 were carriers of

the mutation leading to HD (abnormal CAG expansion in the HTT gene). These

patients were split into presymptomatic (PRE, n = 14) and symptomatic (SYM,

n = 17) groups, depending on their scores in the UHDRS, with a cut-off at

5/124, as previously reported (Tabrizi et al., 2009). The mean estimated dura-

tion to onset in the PRE groupwas 9.4 years, and themean duration from onset

in the SYM group was 5.2 years. Note that the SYM group was still in an early

stage of HD. The other 14 subjects were not carriers of the HD mutation and

http://www.cabiatl.com
http://www.cabiatl.com
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.mathworks.com
http://www.mathworks.com
http://www.bion.de
http://www.bion.de
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therefore considered as healthy controls (CON, n = 14). They were either the

partners or the siblings of other (nonincluded) HD patients. Control subjects

were matched to presymptomatic patients for demographic variables, such

as age (CON: PRE: 46.4 ± 3.1; p > 0.3, t test), gender (CON: 8/6; PRE: 7/7,

p > 0.5, chi2-test), and handedness (CON: 13/1; PRE: 13/1), as well as for

clinical variables, such as the UHDRS score (CON: 1.4 ± 0.3; PRE: 2.1 ± 0.4;

p > 0.1, t test) and the MMS score (CON: 29.6 ± 0.2; PRE: 29.7 ± 0.2;

p > 0.7, t test). Symptomatic patients differed from presymptomatic patients

on UHDRS scores (PRE: 2.1 ± 0.4; SYM: 16.9 ± 2.1; p < 0.001, t test). Among

presymptomatic patients, one was taking anxiolytic treatment at the moment

of the test and one was under neuroprotecting preventive therapy. No

presymptomatic patient was taking any medication interfering with dopami-

nergic functions. Among symptomatic patients, 11/17 were taking neurolep-

tics and 9/17 anxiolytics.

Delineation of Brain Atrophy

All subjects (both HD patients and their relatives) included in the Track-HD

protocol had a three-dimensional anatomical T1 MRI scan. For every step of

the VBM analysis, we used the diffeomorphic anatomical registration through

exponentiated lie algebra (DARTEL) toolbox implemented in SPM8 software.

Following the standard procedure outlined in the VBM tutorial (http://www.

fil.ion.ucl.ac.uk/�john/misc/VBMclass10.pdf), the images were first seg-

mented in the native space into six classes of tissues: gray matter (GM), white

matter (WM), cerebral spinal fluid (CSF), skull, soft tissue outside the brain, and

a last class accounting for air and remaining signal outside the head. Impor-

tantly, this first step generated a roughly (via a rigid-body transformation)

aligned GM and WM image for every subject. Both GM and WM images

were then warped to an iteratively improved template using nonlinear registra-

tion in DARTEL. This step produced the final DARTEL template and the corre-

sponding deformation fields used to match each gray matter image to this

template. Finally, the DARTEL template was registered to the Montreal Neuro-

logical Institute (MNI) space using affine transformation. This transformation

and the DARTEL flow-fields were used to warp the GM images in a way that

preserved their local tissue volumes. A Gaussian kernel of 8 mm full-width at

half-maximum was then applied for spatial smoothing.

The individual GM images were entered in a full factorial design analysis with

group as the main factor. The total intracranial volume was also entered in the

statistical model as a covariate to control for confounding effects of brain size.

Since our groups were matched regarding demographic variables, these were

not included in the model. We first analyzed the main effect of group using

F-contrast. Significance threshold was set at p < 0.001 (uncorrected) with an

extent threshold of 60 contiguous voxels. Significant clusters in this main

group effect were pooled to build a mask for subsequent group comparisons

(CON versus PRE and PRE versus SYM) using two-sample t tests. Anatomical

labeling of significant clusters was obtained by superimposing the statistical

parametric maps to the AAL atlas implemented in MRIcro software. To

examine how atrophy impacted our striatal ROI (VS and DS), we extracted

the percentage of gray matter in each group and compared the loss of gray

matter (relative to HD controls) between the two regions (VS and DS) in each

patient group (PRE and SYM) using paired t test. We also defined three

anatomical a priori ROI to examine the degeneration pattern over the VS,

caudate, and putamen nuclei. These ROIs were manually segmented using

MRIcro software on the single subject T1 template of SPM8 software.

Data Analysis

Performance in the first training sessionwas significantly poorer than in the two

test sessions, whatever the group. This first session was therefore considered

as a practice and not analyzed further. However, the main results (significant

group by condition interactions) were also observed when including this first

session in the analysis. The neutral pair was introduced for fMRI contrasts,

but was discarded for behavioral data analysis. Results therefore come from

the two other sessions, each containing 30 trials for each condition (gain or

loss). Percentage of go responses was not further considered, as it was similar

in all groups and not different from 50%, which comes from the correct cue

being on top of the screen in half the trials. We extracted three dependent vari-

ables, which we termed gain learning, loss learning, and reward bias. Gain and

loss learning were the average percentage of correct choices in the gain and

loss condition. Reward bias was the difference between gain and loss learning.
To test the effects on brain damage, we compared the reward bias between

groups with an ANOVA. Note that testing group effect on the reward bias is

formally equivalent to testing a group by condition interaction. Significant

effects were further analyzed with post hoc between-group comparisons

separately performed on the dependent variables using two-sample t tests.

To further investigate which process was affected by brain damage, we

fitted the learning curves with a computational model. We used the same stan-

dard Q-learning algorithm that was employed to capture the effects of dopa-

minergic drugs in a previous fMRI study (Pessiglione et al., 2006).

For each pair, the model estimated the expected values of the two cues,QA

andQB, on the basis of individual sequences of choices and outcomes. Values

were set at zero before learning and, after every trial t > 0, the value of the

chosen cue (say A) was updated according to the Rescorla–Wagner rule:

QA(t+1) = QA(t)+a*d(t). In the equation, d(t) was the reward prediction error,

calculated as d(t) = R(t)-QA(t), and R(t) was the reinforcement magnitude

associated to the outcome of choosing cue A at trial t. Reinforcement

magnitude was zero for ‘‘nothing’’ outcomes and adjusted as a free parameter

(see below), positive for gains and negative for losses. Given the Q-values,

the associated probability (or likelihood) of selecting each option was

estimated by implementing the softmax rule, which is, for choosing A:

PA(t) = exp(QA(t)/b)/(exp(QA(t)/b)+exp(QB(t)/b)). Free parameters were individu-

ally adjusted to maximize the likelihood of observed choices, separately for

the gain and the loss conditions. The search space was [0:0.1:1] for the

learning rate (a), [0:0.1:1] for the choice randomness (b), and [0:0.1:2] for the

reinforcement magnitude (with a positive sign for reward and negative for pun-

ishments). To test the effect of brain damage, we performed an ANOVA with

group as the main factor, followed by post hoc between-group comparisons

performed separately on the different free parameters using two-sample

t tests.
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Petrovic, P., Pleger, B., Seymour, B., Klöppel, S., De Martino, B., Critchley, H.,

and Dolan, R.J. (2008). Blocking central opiate function modulates hedonic

impact and anterior cingulate response to rewards and losses. J. Neurosci.

28, 10509–10516.

Postuma, R.B., and Dagher, A. (2006). Basal ganglia functional connectivity

based on ameta-analysis of 126 positron emission tomography and functional

magnetic resonance imaging publications. Cereb. Cortex 16, 1508–1521.

Ravel, S., Legallet, E., and Apicella, P. (2003). Responses of tonically active

neurons in the monkey striatum discriminate between motivationally opposing

stimuli. J. Neurosci. 23, 8489–8497.

Rutledge, R.B., Dean, M., Caplin, A., and Glimcher, P.W. (2010). Testing the

reward prediction error hypothesis with an axiomatic model. J. Neurosci. 30,

13525–13536.

Samanez-Larkin, G.R., Hollon, N.G., Carstensen, L.L., and Knutson, B. (2008).

Individual differences in insular sensitivity during loss anticipation predict

avoidance learning. Psychol. Sci. 19, 320–323.

Schlund, M.W., and Cataldo, M.F. (2010). Amygdala involvement in human

avoidance, escape and approach behavior. Neuroimage 53, 769–776.



Neuron

Avoidance Learning System in the Human Brain
Seymour, B., O’Doherty, J.P., Dayan, P., Koltzenburg, M., Jones, A.K., Dolan,

R.J., Friston, K.J., and Frackowiak, R.S. (2004). Temporal difference models

describe higher-order learning in humans. Nature 429, 664–667.

Seymour, B., Daw, N., Dayan, P., Singer, T., and Dolan, R. (2007). Differential

encoding of losses and gains in the human striatum. J. Neurosci. 27, 4826–

4831.

Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction

(Cambridge, MA: The MIT Press).

Tabrizi, S.J., Langbehn, D.R., Leavitt, B.R., Roos, R.A., Durr, A., Craufurd, D.,

Kennard, C., Hicks, S.L., Fox, N.C., Scahill, R.I., et al.; TRACK-HD investiga-
tors. (2009). Biological and clinical manifestations of Huntington’s disease in

the longitudinal TRACK-HD study: cross-sectional analysis of baseline data.

Lancet Neurol. 8, 791–801.

Tom, S.M., Fox, C.R., Trepel, C., and Poldrack, R.A. (2007). The neural basis of

loss aversion in decision-making under risk. Science 315, 515–518.

Tversky, A., and Kahneman, D. (1992). Advances in prospect theory:

Cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323.

Yacubian, J., Gläscher, J., Schroeder, K., Sommer, T., Braus, D.F., and

Büchel, C. (2006). Dissociable systems for gain- and loss-related value predic-

tions and errors of prediction in the human brain. J. Neurosci. 26, 9530–9537.
Neuron 76, 998–1009, December 6, 2012 ª2012 Elsevier Inc. 1009


	Critical Roles for Anterior Insula and Dorsal Striatum in Punishment-Based Avoidance Learning
	Introduction
	Results
	Brain Damage Delineation
	Behavioral Analysis
	Computational Analysis

	Discussion
	Experimental Procedures
	Behavioral Task
	Regions of Interest
	Subjects
	Brain Tumors
	Delineation of Brain Lesion
	Huntington Disease
	Delineation of Brain Atrophy

	Data Analysis

	Supplemental Information
	Acknowledgments
	References


