44 research outputs found

    Rapid post-fire re-assembly of species-rich bryophyte communities in Afroalpine heathlands

    Get PDF
    Questions In some fire-prone ecosystems, bryophytes play a crucial role by providing the surface fuel that controls the fire return interval. Afroalpine heathlands are such an ecosystem, yet almost nothing is known about the bryophytes in this system. We do not know the level of species richness, or if there is a successive accumulation of species over time, or if some species are adapted to specific phases along the successional gradient, for example early-successional species sensitive to competition. Location Afroalpine heathlands in Ethiopia. Methods We made an inventory of all bryophytes in 48 plots of 5 m × 5 m, distributed along a chronosequence from 1 to 25 years post fire. The heathlands are located between 3500 m and 3800 m a.s.l. and are managed by traditional pasture burning with fire intervals of 8–20 years. Results We found in total 111 taxa of bryophytes. Post-fire mortality was almost 100%. The youngest plots had only a few cosmopolitan species often found after fire. Initially, species richness increased monotonically while starting to level off around 15 years after fire, when many plots had around 30 species and a high cover of Breutelia diffracta, which is a key ground-living species, important as surface fuel. Most species were found with sporophytes, a pattern even stronger for the most frequent species. Conclusions Interestingly, bryophyte diversity is already remarkably high by only 15 years after total eradication. The relatively slow accumulation of species in the first years after fire suggests that dispersal in space, and not time, is the major mechanism by which sites regain their diversity (i.e. spore banks play a smaller role than colonization of wind-borne spores). This indicates that the high species richness is built up through colonization from surrounding heathlands, and perhaps also from higher-altitude alpine grasslands and lower-altitude forests, and that the bryophyte diversity in this system is maintained by the traditional fire and grazing management

    Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a progressive multisystemic disease that increases significantly cardiovascular morbidity and mortality. It is associated with obesity, insulin resistance, beta-cell dysfunction, and hyperglucagonemia, the combination of which typically leads to hyperglycemia. Incretin-based treatment modalities, and in particular glucagon-like peptide 1 (GLP-1) receptor agonists, are able to successfully counteract several of the underlying pathophysiological abnormalities of T2DM. The pancreatic effects of GLP-1 receptor agonists include glucose-lowering effects by stimulating insulin secretion and inhibiting glucagon release in a strictly glucose-dependent manner, increased beta-cell proliferation, and decreased beta-cell apoptosis. GLP-1 receptors are widely expressed throughout human body; thus, GLP-1-based therapies exert pleiotropic and multisystemic effects that extend far beyond pancreatic islets. A large body of experimental and clinical data have suggested a considerable protective role of GLP-1 analogs in the cardiovascular system (decreased blood pressure, improved endothelial and myocardial function, functional recovery of failing and ischemic heart, arterial vasodilatation), kidneys (increased diuresis and natriuresis), gastrointestinal tract (delayed gastric emptying, reduced gastric acid secretion), and central nervous system (appetite suppression, neuroprotective properties). The pharmacologic use of GLP-1 receptor agonists has been shown to reduce bodyweight and systolic blood pressure, and significantly improve glycemic control and lipid profile. Interestingly, weight reduction induced by GLP-1 analogs reflects mainly loss of abdominal visceral fat. The critical issue of whether the emerging positive cardiometabolic effects of GLP-1 analogs can be translated into better clinical outcomes for diabetic patients in terms of long-term hard endpoints, such as cardiovascular morbidity and mortality, remains to be elucidated with prospective, large-scale clinical trials

    Exendin-4 effects on islet volume and number in mouse pancreas

    Get PDF
    The aim of this study was to evaluate Exendin-4 (EX-4) effects on islet volume and number in the mouse pancreas. Thirty-two healthy adult male NMRI mice were randomly divided into control and experimental groups. EX-4 was injected intraperitoneally (i. p.) at doses of 0.25 (E1 group), 0.5 (E2 group), and 1 µg/kg (E3 group), twice a day for 7 consecutive days. One day after the final injection, the mice were sacrificed, and the pancreas from each animal dissected out, weighed, and fixed in 10% formalin for measurement of pancreas and islet volume, and determination of islet number by stereological assessments. There was a significant increase in the weight of pancreases in the E3 group. Islet and pancreas volumes in E1 and E2 groups were unchanged compared to the control group. The E3 group showed a significant increase in islet and pancreas volume (P < 0.05). There were no significant changes in the total number of islets in all three experimental groups. The results revealed that EX-4 increased pancreas and islet volume in non-diabetic mice. The increased total islet mass is probably caused by islet hypertrophy without the formation of additional islets

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    The many faces of PNA

    No full text

    SOCS1 gene transfer accelerates the transition to heart failure through the inhibition of the gp130/JAK/STAT pathway.

    No full text
    The suppressors of cytokine signalling (SOCS) are identified inhibitors of cytokine and growth factor signalling that act via the Janus kinase (JAK) signal transducers and activators of transcription (STAT) pathways. Aberrant JAK/STAT signalling promotes progression from hypertrophy to heart failure. Little information is available concerning the role of SOCS in the transition from hypertrophy to heart failure. To this aim, we investigated the effects of SOCS1 overexpression obtained by in vivo adeno-associated gene transfer using an aortopulmonary cross-clamping technique in a chronic pressure-overload cardiac rat model. Rats were randomized into four groups: sham-operated (n 18), aortic banding (AB) (n 18), AB viral vector encoding for haemoagglutinin (AB HA, n 16), and AB viral vector encoding for SOCS1 (AB SOCS1, n 18). Echocardiographic and haemodynamic measurements were performed 15 weeks after banding. While SOCS3 was upregulated during the hypertrophic phase, SOCS1 transcript levels increased significantly between 15 and 20 weeks. Remodelling was markedly worse in AB SOCS1, showed larger left ventricular internal dimensions (16), higher end-diastolic pressures (57) and wall stress (45), and reduced fractional shortening (32) compared with AB HA; apoptotic rate was increased threefold and the gp130 pathway was inhibited. Ex vivo experiments showed that mechanical stretch upregulated SOCS1 expression, which was in turn attenuated by tumour necrosis factor- (TNF-) inhibition. Enhanced SOCS1 myocardial signalling is associated with accelerated transition from hypertrophy to failure in an established model of pressure overload. SOCS1 may represent an attractive target for the prevention of heart failure progression

    Restoration of receptor-type protein tyrosine phosphatase eta function inhibits human pancreatic carcinoma cell growth in vitro and in vivo.

    No full text
    DEP-1/HPTPeta, a receptor-type protein tyrosine phosphatase, is a candidate tumor suppressor gene because its expression was blocked in rat and human thyroid transformed cells, and its restoration reverted their neoplastic phenotype. In addition, loss of DEP-1/HPTPeta heterozygosity has been described in mammary, lung and colon primary tumors. We now show that DEP-1/HPTPeta is drastically reduced in several cell lines originating from human epithelial pancreatic carcinomas compared with normal pancreatic tissue. We also show that the infection of AsPC1 and PSN1 cells with a recombinant adenovirus carrying r-PTPeta cDNA (the rat homolog of DEP-1/HPTPeta) inhibits their proliferation. Flow cytometric analysis of the infected cells demonstrated that restoration of r-PTPeta activity disrupts their cell cycle and leads to apoptosis. Finally, the growth of PSN1 xenograft tumors was blocked by the intratumoral injection of a recombinant adeno-associated virus carrying r-PTPeta. The data suggest that restoration of DEP-1/HPTPeta expression could be a useful tool for the gene therapy of human pancreatic cancers
    corecore