606 research outputs found

    Problems With Complex Actions

    Get PDF
    We consider Euclidean functional integrals involving actions which are not exclusively real. This situation arises, for example, when there are tt-odd terms in the the Minkowski action. Writing the action in terms of only real fields (which is always possible), such terms appear as explicitly imaginary terms in the Euclidean action. The usual quanization procedure which involves finding the critical points of the action and then quantizing the spectrum of fluctuations about these critical points fails. In the case of complex actions, there do not exist, in general, any critical points of the action on the space of real fields, the critical points are in general complex. The proper definition of the function integral then requires the analytic continuation of the functional integration into the space of complex fields so as to pass through the complex critical points according to the method of steepest descent. We show a simple example where this procedure can be carried out explicitly. The procedure of finding the critical points of the real part of the action and quantizing the corresponding fluctuations, treating the (exponential of the) complex part of the action as a bounded integrable function is shown to fail in our explicit example, at least perturbatively.Comment: 6+epsilon pages, no figures, presented at Theory CANADA

    Braided structure of fractional Z3Z_3-supersymmetry

    Get PDF
    It is shown that fractional Z3Z_3-superspace is isomorphic to the qexp(2πi/3)q\to\exp(2\pi i/3) limit of the braided line. Z3Z_3-supersymmetry is identified as translational invariance along this line. The fractional translation generator and its associated covariant derivative emerge as the qexp(2πi/3)q\to\exp(2\pi i/3) limits of the left and right derivatives from the calculus on the braided lineComment: 8 pages, LaTeX, submitted to Proceedings of the 5th Colloquium `Quantum groups and integrable systems', Prague, June 1996 (to appear in Czech. J. Phys.

    Chern-Simons Solitons, Chiral Model, and (affine) Toda Model on Noncommutative Space

    Full text link
    We consider the Dunne-Jackiw-Pi-Trugenberger model of a U(N) Chern-Simons gauge theory coupled to a nonrelativistic complex adjoint matter on noncommutative space. Soliton configurations of this model are related the solutions of the chiral model on noncommutative plane. A generalized Uhlenbeck's uniton method for the chiral model on noncommutative space provides explicit Chern-Simons solitons. Fundamental solitons in the U(1) gauge theory are shaped as rings of charge `n' and spin `n' where the Chern-Simons level `n' should be an integer upon quantization. Toda and Liouville models are generalized to noncommutative plane and the solutions are provided by the uniton method. We also define affine Toda and sine-Gordon models on noncommutative plane. Finally the first order moduli space dynamics of Chern-Simons solitons is shown to be trivial.Comment: latex, JHEP style, 23 pages, no figur

    Supersymmetry from a braided point of view

    Get PDF
    We show that one-dimensional superspace is isomorphic to a non-trivial but consistent limit as q1q\to-1 of the braided line. Supersymmetry is identified as translational invariance along this line. The supertranslation generator and covariant derivative are obtained in the limit in question as the left and right derivatives of the calculus on the braided line.Comment: LateX file. 10 pages. To appear in Phys. Lett.

    Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges

    Full text link
    We study the resonant tunneling of quasiparticles through an impurity between the edges of a Fractional Quantum Hall sample. We show that the one-particle momentum distribution of fractionally charged edge quasiparticles has a quasi-Fermi character. The density of states near the quasi-Fermi energy at zero temperature is singular due to the statistical interaction of quasiparticles. Another effect of this interaction is a new selection rule for the resonant tunneling of fractionally charged quasiparticles: the resonance is suppressed unless an integer number of {\em electrons} occupies the impurity. It allows a new explanation of the scaling behavior observed in the mesoscopic fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1

    Sources for Chern-Simons theories

    Full text link
    The coupling between Chern-Simons theories and matter sources defined by branes of different dimensionalities is examined. It is shown that the standard coupling to membranes, such as the one found in supergravity or in string theory, does not operate in the same way for CS theories; the only p-branes that naturally couple seem to be those with p=2n; these p-branes break the gauge symmetry (and supersymmetry) in a controlled and sensible manner.Comment: 17 pages, Dedicated to Claudio Bunster on the occasion of his 60th birthday. To appear in Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicit

    Scale free networks from a Hamiltonian dynamics

    Full text link
    Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By applying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power law form in an intermediate range of the parameters used. Interestingly, in the same range we find non-trivial hierarchical clustering.Comment: 4 pages, revtex4, 5 figures. v2: corrected statements about equilibriu

    Herschel-ATLAS/GAMA: A difference between star formation rates in strong-line and weak-line radio galaxies

    Get PDF
    We have constructed a sample of radio-loud objects with optical spectroscopy from the Galaxy and Mass Assembly (GAMA) project over the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS) Phase 1 fields. Classifying the radio sources in terms of their optical spectra, we find that strong-emission-line sources ('high-excitation radio galaxies') have, on average, a factor of ~4 higher 250-μm Herschel luminosity than weak-line ('lowexcitation') radio galaxies and are also more luminous than magnitude-matched radio-quiet galaxies at the same redshift. Using all five H-ATLAS bands, we show that this difference in luminosity between the emission-line classes arises mostly from a difference in the average dust temperature; strong-emission-line sources tend to have comparable dust masses to, but higher dust temperatures than, radio galaxies with weak emission lines. We interpret this as showing that radio galaxies with strong nuclear emission lines are much more likely to be associated with star formation in their host galaxy, although there is certainly not a one-to-one relationship between star formation and strong-line active galactic nuclei (AGN) activity. The strong-line sources are estimated to have star formation rates at least a factor of 3-4 higher than those in the weak-line objects. Our conclusion is consistent with earlier work, generally carried out using much smaller samples, and reinforces the general picture of high-excitation radio galaxies as being located in lower-mass, less evolved host galaxies than their low-excitation counterparts.Peer reviewe
    corecore