593 research outputs found

    Compositional and Dynamic Controls on Mafic—Silicic Magma Interactions at Continental Arc Volcanoes: Evidence from Cordón El Guadal, Tatara-San Pedro Complex, Chile

    Get PDF
    Heterogeneous andesitic and dacitic lavas on Cordón El Guadal bear on the general problem of how magmas of differing compositions and physical properties interact in shallow reservoirs beneath continental arc volcanoes. Some of the lavas contain an exceptionally large proportion (<40%) of undercooled basaltic andesitic magma in various states of disaggregation. Under-cooled mafic magma occurs in the silicic lavas as large (<40 cm) basaltic andesitic magmatic inclusions, as millimeter-sized crystal-clots of Mg-rich olivine phenocrysts plus adhering Carich plagioclase microphenocrysts (An50-70), and as uniformly distributed, isolated phenocrysts and microphenocrysts. Compositions and textures of plagioclase phenocrysts indicate that inclusion-forming magmas are hybrids formed by mixing basaltic and dacitic melts, whereas textural features and compositions of groundmass phases indicate that the andesitic and dacitic lavas are largely mechanical mixtures of dacitic magma and crystallized basaltic andesitic magma. This latter observation is significant because it indicates that mechanical blending of undercooled mafic magma and partially crystallized silicic magma is a possible mechanism for producing the common porphyritic texture of many calc-alkaline volcanic rocks. The style of mafic-silicic magma interaction at Cordon El Guadal was strongly dependent upon the relative proportions of the endmembers. Equally important in the Guadal system, however, was the manner in which the contrasting magmas were juxtaposed. Textural evidence preserved in the plagioclase phenocrysts indicates that the transition from liquid-liquid to solid-liquid mixing was not continuous, but was partitioned into periods of magma chamber recharge and eruption, respectively. Evidently, during periods of recharge, basaltic magmas rapidly entrained small amounts of dacitic magma along the margins of a turbulent injection fountain. Conversely, during periods of eruption, dacitic magma gradually incorporated small parcels of basaltic andesitic magma. Thus, the coupled physical-chemical transition from mixed inclusions to commingled lavas is presumably not coincidental. More likely, it probably provides a partial record of the dynamic processes occurring in shallow magma chambers beneath continental are volcanoe

    Approaches to Improving School Attendance: Insights From Australian Principals

    Get PDF
    School absenteeism has been concerning educators in the Global North (including Australia) as research suggests a relationship between school attendance, academic achievement and subsequent life chances. This paper focuses on the perspectives of 50 school leaders in Queensland, Australia about approaches to improving attendance. Strategies reflected the cultural, economic and social diversity of their school communities. In general, quality curricula and pedagogies were considered important, but were not explicitly linked to attendance. This suggests the need for schools to develop strategies to enhance student engagement in meaningful learning through quality curricula and pedagogies within a positive school environment

    Petrological Insights into Shifts in Eruptive Styles at Volcán Llaima (Chile)

    Get PDF
    Tephra and lava pairs from two summit eruptions (ad 2008 and 1957) and a flank fissure eruption (∼ ad 1850) are compared in terms of textures, phenocryst contents, and mineral zoning patterns to shed light on processes responsible for the shifts in eruption style during typical eruptive episodes at Volcán Llaima (Andean Southern Volcanic Zone, Chile). The mineralogy and whole-rock compositions of tephra and lavas are similar within eruptive episodes, suggesting a common magma reservoir for Strombolian paroxysms and lava effusion. The zoning profiles and textures of plagioclase record successive and discrete intrusions of volatile-rich mafic magma accompanied by mixing of these recharge magmas with the resident basaltic-andesitic crystal mushes that are commonly present at shallow levels in the Llaima system. Each recharge event destabilizes the plagioclase in equilibrium with the resident crystal mush melt and stabilizes relatively An-rich plagioclase, as is recorded by the numerous resorption zones. Lavas typically have ∼15-20 vol. % more phenocrysts than the tephra. Differences in plagioclase and olivine textures and zoning, combined with different phenocryst contents, indicate that a greater volume fraction of recharge magma is present in the explosively erupted magma than in subsequent effusively erupted magma. We propose that Strombolian paroxysms at Volcán Llaima are triggered by interactions with large volume fractions of recharge magma, which decrease the bulk viscosity and increase the volatile contents of the erupted magmas, leading to the conditions required for the fragmentation of basaltic-andesite. Lava effusion ensues from reduced interactions with the recharge magma, after it has partially degassed and crystallized, thereby impeding rapid ascent. This process could be operating at other steady-state basaltic volcanoes, wherein shallow reservoirs are periodically refilled by fresh, volatile-rich magma

    Spectral Network (SpecNet)—What is it and why do we need it?

    Get PDF
    Effective integration of optical remote sensing with flux measurements across multiple scales is essential for understanding global patterns of surface–atmosphere fluxes of carbon and water vapor. SpecNet (Spectral Network) is an international network of cooperating investigators and sites linking optical measurements with flux sampling for the purpose of improving our understanding of the controls on these fluxes. An additional goal is to characterize disturbance impacts on surface–atmosphere fluxes. To reach these goals, key SpecNet objectives include the exploration of scaling issues, development of novel sampling tools, standardization and intercomparison of sampling methods, development of models and statistical methods that relate optical sampling to fluxes, exploration of component fluxes, validation of satellite products, and development of an informatics approach that integrates disparate data sources across scales. Examples of these themes are summarized in this review

    Spectral Network (SpecNet)—What is it and why do we need it?

    Get PDF
    Effective integration of optical remote sensing with flux measurements across multiple scales is essential for understanding global patterns of surface–atmosphere fluxes of carbon and water vapor. SpecNet (Spectral Network) is an international network of cooperating investigators and sites linking optical measurements with flux sampling for the purpose of improving our understanding of the controls on these fluxes. An additional goal is to characterize disturbance impacts on surface–atmosphere fluxes. To reach these goals, key SpecNet objectives include the exploration of scaling issues, development of novel sampling tools, standardization and intercomparison of sampling methods, development of models and statistical methods that relate optical sampling to fluxes, exploration of component fluxes, validation of satellite products, and development of an informatics approach that integrates disparate data sources across scales. Examples of these themes are summarized in this review

    The Upper Crustal Evolution of a Large Silicic Magma Body: Evidence from Crystal-scale Rb-Sr Isotopic Heterogeneities in the Fish Canyon Magmatic System, Colorado

    Get PDF
    Batholith-sized bodies of crystal-rich magmatic ‘mush' are widely inferred to represent the hidden sources of many large-volume high-silica rhyolite eruptive units. Occasionally these mush bodies are ejected along with their trapped interstitial liquid, forming the distinctive crystal-rich ignimbrites known as ‘monotonous intermediates'. These ignimbrites are notable for their combination of high crystal contents (35-55%), dacitic bulk compositions with interstitial high-silica rhyolitic glass, and general lack of compositional zonation. The 5000 km3 Fish Canyon Tuff is an archetypal eruption deposit of this type, and is the largest known silicic eruption on Earth. Ejecta from the Fish Canyon magmatic system are notable for the limited compositional variation that they define on the basis of whole-rock chemistry, whereas ∼ 45 vol. % crystals in a matrix of high-silica rhyolite glass together span a large range of mineral-scale isotopic variability (microns to millimetres). Rb/Sr isotopic analyses of single crystals (sanidine, plagioclase, biotite, hornblende, apatite, titanite) and sampling by micromilling of selected zones within glass plus sanidine and plagioclase crystals document widespread isotopic disequilibrium at many scales. High and variable 87Sr/86Sri values for euhedral biotite grains cannot be explained by any model involving closed-system radiogenic ingrowth, and they are difficult to rationalize unless much of this radiogenic Sr has been introduced at a late stage via assimilation of local Proterozoic crust. Hornblende is the only phase that approaches isotopic equilibrium with the surrounding melt, but the melt (glass) was isotopically heterogeneous at the millimetre scale, and was therefore apparently contaminated with radiogenic Sr shortly prior to eruption. The other mineral phases (plagioclase, sanidine, titanite, and apatite) have significantly lower 87Sr/86Sri values than whole-rock values (as much as −0·0005). Such isotopic disequilibrium implies that feldspars, titanite and apatite are antecrysts that crystallized from less radiogenic melt compositions at earlier stages of magma evolution, whereas highly radiogenic biotite xenocrysts and the development of isotopic heterogeneity in matrix melt glass appear to coincide with the final stage of the evolution of the Fish Canyon magma body in the upper crust. Integrated petrographic and geochemical evidence is consistent with pre-eruptive thermal rejuvenation of a near-solidus mineral assemblage from ∼720 to 760°C (i.e. partial dissolution of feldspars + quartz while hornblende + titanite + biotite were crystallizing). Assimilation and blending of phenocrysts, antecrysts and xenocrysts reflects chamber-wide, low Reynolds number convection that occurred within the last ∼10 000 years before eruptio

    Potential Benefits of Combined Statin and Metformin Therapy on Resistance Training Response in Older Individuals

    Get PDF
    Metformin and statins are currently the focus of large clinical trials testing their ability to counter age-associated declines in health, but recent reports suggest that both may negatively affect skeletal muscle response to exercise. However, it has also been suggested that metformin may act as a possible protectant of statin-related muscle symptoms. The potential impact of combined drug use on the hypertrophic response to resistance exercise in healthy older adults has not been described. We present secondary statin analyses of data from the MASTERS trial where metformin blunted the hypertrophy response in healthy participants (\u3e65 years) following 14 weeks of progressive resistance training (PRT) when compared to identical placebo treatment (n = 94). Approximately one-third of MASTERS participants were taking prescribed statins. Combined metformin and statin resulted in rescue of the metformin-mediated impaired growth response to PRT but did not significantly affect strength. Improved muscle fiber growth may be associated with medication-induced increased abundance of CD11b+/CD206+ M2-like macrophages. Sarcopenia is a significant problem with aging and this study identifies a potential interaction between these commonly used drugs which may help prevent metformin-related blunting of the beneficial effects of PRT

    A Muscle Cell-Macrophage Axis Involving Matrix Metalloproteinase 14 Facilitates Extracellular Matrix Remodeling with Mechanical Loading

    Get PDF
    The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor (LIF) is robustly upregulated and can stimulate Mmp14 expression in macrophages. Functional experiments confirmed that modulation of this muscle cell-macrophage axis facilitated Type I collagen turnover. Finally, changes in LIF expression were significantly correlated with MMP14 expression in humans following 14 weeks of PRT. Our experiments reveal a mechanism whereby muscle fibers influence macrophage behavior to promote ECM remodeling in response to mechanical loading

    Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging

    Get PDF
    There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle from old mice that PoWeR-trained for eight weeks was approximately eight weeks younger than 24-month-old sedentary counterparts, which represents ~8% of the expected murine lifespan. These data provide a molecular basis for exercise as a therapy to attenuate skeletal muscle aging
    • …
    corecore