68 research outputs found

    Determination of spin and orbital magnetization in the ferromagnetic superconductor UCoGe

    Get PDF
    International audienceThe magnetism in the ferromagnetic superconductor UCoGe has been studied using a combination of magnetic Compton scattering, bulk magnetization, X-ray magnetic circular dichroism and electronic structure calculations, in order to determine the spin and orbital moments. The experimentally observed total spin moment, Ms, was found to be-0.24 ± 0.05 ”B at 5 T. By comparison with the total moment of 0.16 ± 0.01 ”B, the orbital moment, M l , was determined to be 0.40 ± 0.05 ”B. The U and Co spin moments were determined to be antiparallel. We find that the U 5f electrons carry a spin moment of Us ≈-0.30 ”B and that there is a Co spin moment of Cos ≈ 0.06 ”B induced via hybridization. The ratio U l /Us, of −1.3 ± 0.3, shows the U moment to be itinerant. In order to ensure an accurate description of the properties of 5f systems, and to provide a critical test of the theoretical approaches, it is clearly necessary to obtain experimental data for both the spin and orbital moments, rather than just the total magnetic moment. This can be achieved simply by measuring the spin moment with magnetic Compton scattering and comparing this to the total moment from bulk magnetizatio

    Dogger Bank : a geo challenge

    Get PDF
    The Dogger Bank zone is the largest of the Round 3 offshore wind zones extending over ~8660km2. It is located between 125km and 290km northeast of Yorkshire on the Dogger Bank, a topographic high point in the middle of the North Sea, with water depths of 18–63m. The sheer size of this zone is considerably greater than that of standard shallow-water oil and gas site investigations, leading to the generation of extremely large data volumes to manage, interpret and move between partners. This paper outlines the methodologies that Forewind, a consortium of energy companies, is utilising to prepare for the zone's development. This includes activities undertaken to date to develop a 3D model of the geology, stratigraphy and geotechnical conditions to assist in optimal selection of wind turbine foundations, both location and type. Survey programmes and preliminary results also are presented and discussed, illustrating experiences with ultra-high resolution multichannel sparker, shallow gas, glacial tectonics and fractured clays

    Geometric origin of mechanical properties of granular materials

    Full text link
    Some remarkable generic properties, related to isostaticity and potential energy minimization, of equilibrium configurations of assemblies of rigid, frictionless grains are studied. Isostaticity -the uniqueness of the forces, once the list of contacts is known- is established in a quite general context, and the important distinction between isostatic problems under given external loads and isostatic (rigid) structures is presented. Complete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise, the network of contacts might deform elastically in response to load increments, even though grains are rigid. This sets an uuper bound on the contact coordination number. The approximation of small displacements (ASD) allows to draw analogies with other model systems studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the equilibrium state (the list of contacts itself is geometrically determined) for cohesionless grains, and thus the absence of plastic dissipation. Plasticity and hysteresis are due to the lack of such uniqueness and may stem, apart from intergranular friction, from small, but finite, rearrangements, in which the system jumps between two distinct potential energy minima, or from bounded tensile contact forces. The response to load increments is discussed. On the basis of past numerical studies, we argue that, if the ASD is valid, the macroscopic displacement field is the solution to an elliptic boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and minor errors correcte

    Crowd computing as a cooperation problem: an evolutionary approach

    Get PDF
    Cooperation is one of the socio-economic issues that has received more attention from the physics community. The problem has been mostly considered by studying games such as the Prisoner's Dilemma or the Public Goods Game. Here, we take a step forward by studying cooperation in the context of crowd computing. We introduce a model loosely based on Principal-agent theory in which people (workers) contribute to the solution of a distributed problem by computing answers and reporting to the problem proposer (master). To go beyond classical approaches involving the concept of Nash equilibrium, we work on an evolutionary framework in which both the master and the workers update their behavior through reinforcement learning. Using a Markov chain approach, we show theoretically that under certain----not very restrictive-conditions, the master can ensure the reliability of the answer resulting of the process. Then, we study the model by numerical simulations, finding that convergence, meaning that the system reaches a point in which it always produces reliable answers, may in general be much faster than the upper bounds given by the theoretical calculation. We also discuss the effects of the master's level of tolerance to defectors, about which the theory does not provide information. The discussion shows that the system works even with very large tolerances. We conclude with a discussion of our results and possible directions to carry this research further.This work is supported by the Cyprus Research Promotion Foundation grant TE/HPO/0609(BE)/05, the National Science Foundation (CCF-0937829, CCF-1114930), Comunidad de Madrid grant S2009TIC-1692 and MODELICO-CM, Spanish MOSAICO, PRODIEVO and RESINEE grants and MICINN grant TEC2011-29688-C02-01, and National Natural Science Foundation of China grant 61020106002.Publicad

    FRACTURE INITIATION BY STRESS WAVE LOADING

    No full text
    On décrit une méthode d'essai développée pour permettre l'évaluation de la ténacité KIc ou JIc sous conditions de chargement dynamique et de déformation plane. La vitesse de la ténacité réalisée dans cet essai, avec des aciers structuraux, donne une valeur de KI égale à 2 x 106 MPa [MATH] s-1. On examine la précision de cette méthode d'essai à l'aide d'une récente analyse par éléments finis.We describe an experimental technique which has been developed to determine the fracture toughness KIc or JIc under dynamic plane strain loading conditions. Loading rates KI of 2 x 106 MPa [MATH] s-1 have been achieved in experiments with structural steels. The accuracy of the experimental procedure is discussed in the light of a recent finite element analysis

    Height discordance in monozygotic females is not attributable to discordant inactivation of X-linked stature determining genes

    No full text
    We tested the hypothesis that X-linked genes determining stature which are subject to skewed or non-random X-inactivation can account for discordance in height in monozygotic female twins. Height discordant female monozygotic adult twins (20 pairs) were identified from the Australian Twin Registry, employing the selection criteria of proven monozygosity and a measured height discordance of at least 5 cm. Differential X-inactivation was examined in genomic DNA extracted from peripheral lymphocytes by estimating differential methylation of alleles at the polymorphic CAG triplet repeat of the Androgen receptor gene (XAR). There were 17/20 MZ pairs heterozygous at this locus and informative for analysis. Of these, 10/17 both had random X-inactivation, 5/17 showed identical X-inactivation patterns of non random inactivation and 2/17 (12%) showed discordant X-inactivation. There was no relationship between inactivation patterns and self-report chorionicity. We conclude that non-random X-inactivation does not appear to be a major contributor to intra-pair height discordance in female MZ twins

    Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae

    Get PDF
    Estrogens are known to play a role in both reproductive and non-reproductive functions in mammals. Estrogens and their receptors are involved in the development of the central nervous system (brain development, neuronal survival and differentiation) as well as in the development of the peripheral nervous system (sensory-motor behaviors). In order to decipher possible functions of estrogens in early development of the zebrafish sensory system, we investigated the role of estrogen receptor beta(2) (ERbeta(2)) by using a morpholino (MO) approach blocking erbeta(2) RNA translation. We further investigated the development of lateral line organs by cell-specific labeling, which revealed a disrupted development of neuromasts in morphants. The supporting cells developed and migrated normally. Sensory hair cells, however, were absent in morphants' neuromasts. Microarray analysis and subsequent in situ hybridizations indicated an aberrant activation of the Notch signaling pathway in ERbeta(2) morphants. We conclude that signaling via ERbeta(2) is essential for hair cell development and may involve an interaction with the Notch signaling pathway during cell fate decision in the neuromast maturation process
    • 

    corecore