16,913 research outputs found
Tuning the electronic transport properties of graphene through functionalisation with fluorine
Engineering the electronic properties of graphene has triggered great
interest for potential applications in electronics and opto-electronics. Here
we demonstrate the possibility to tune the electronic transport properties of
graphene monolayers and multilayers by functionalisation with fluorine. We show
that by adjusting the fluorine content different electronic transport regimes
can be accessed. For monolayer samples, with increasing the fluorine content,
we observe a transition from electronic transport through Mott variable range
hopping in two dimensions to Efros - Shklovskii variable range hopping.
Multilayer fluorinated graphene with high concentration of fluorine show
two-dimensional Mott variable range hopping transport, whereas CF0.28
multilayer flakes have a band gap of 0.25eV and exhibit thermally activated
transport. Our experimental findings demonstrate that the ability to control
the degree of functionalisation of graphene is instrumental to engineer
different electronic properties in graphene materials.Comment: 6 pages, 5 figure
Properties of Phase transitions of a Higher Order
The following is a thermodynamic analysis of a III order (and some aspects of
a IV order) phase transition. Such a transition can occur in a superconductor
if the normal state is a diamagnet. The equation for a phase boundary in an H-T
(H is the magnetic field, T, the temperature) plane is derived. by considering
two possible forms of the gradient energy, it is possible to construct a field
theory which describes a III or a IV order transition and permits a study of
thermal fluctuations and inhomogeneous order parameters.Comment: 13 pages, revtex, no figure
Optimization of multivariate analysis for IACT stereoscopic systems
Multivariate methods have been recently introduced and successfully applied
for the discrimination of signal from background in the selection of genuine
very-high energy gamma-ray events with the H.E.S.S. Imaging Atmospheric
Cerenkov Telescope. The complementary performance of three independent
reconstruction methods developed for the H.E.S.S. data analysis, namely Hillas,
model and 3D-model suggests the optimization of their combination through the
application of a resulting efficient multivariate estimator. In this work the
boosted decision tree method is proposed leading to a significant increase in
the signal over background ratio compared to the standard approaches. The
improved sensitivity is also demonstrated through a comparative analysis of a
set of benchmark astrophysical sources.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in
Astroparticle Physic
- …