694 research outputs found

    Universal thermal and electrical conductivity from holography

    Full text link
    It is known from earlier work of Iqbal, Liu (arXiv:0809.3808) that the boundary transport coefficients such as electrical conductivity (at vanishing chemical potential), shear viscosity etc. at low frequency and finite temperature can be expressed in terms of geometrical quantities evaluated at the horizon. In the case of electrical conductivity, at zero chemical potential gauge field fluctuation and metric fluctuation decouples, resulting in a trivial flow from horizon to boundary. In the presence of chemical potential, the story becomes complicated due to the fact that gauge field and metric fluctuation can no longer be decoupled. This results in a nontrivial flow from horizon to boundary. Though horizon conductivity can be expressed in terms of geometrical quantities evaluated at the horizon, there exist no such neat result for electrical conductivity at the boundary. In this paper we propose an expression for boundary conductivity expressed in terms of geometrical quantities evaluated at the horizon and thermodynamical quantities. We also consider the theory at finite cutoff outside the horizon (arXiv:1006.1902) and give an expression for cutoff dependent electrical conductivity, which interpolates smoothly between horizon conductivity and boundary conductivity . Using the results about the electrical conductivity we gain much insight into the universality of thermal conductivity to viscosity ratio proposed in arXiv:0912.2719.Comment: An appendix added discussing relation between boundary conductivity and universal conductivity of stretched horizon, version to be published in JHE

    Analytic Lifshitz black holes in higher dimensions

    Get PDF
    We generalize the four-dimensional R^2-corrected z=3/2 Lifshitz black hole to a two-parameter family of black hole solutions for any dynamical exponent z and for any dimension D. For a particular relation between the parameters, we find the first example of an extremal Lifshitz black hole. An asymptotically Lifshitz black hole with a logarithmic decay is also exhibited for a specific critical exponent depending on the dimension. We extend this analysis to the more general quadratic curvature corrections for which we present three new families of higher-dimensional D>=5 analytic Lifshitz black holes for generic z. One of these higher-dimensional families contains as critical limits the z=3 three-dimensional Lifshitz black hole and a new z=6 four-dimensional black hole. The variety of analytic solutions presented here encourages to explore these gravity models within the context of non-relativistic holographic correspondence.Comment: 14 page

    Black holes and black branes in Lifshitz spacetimes

    Full text link
    We construct analytic solutions describing black holes and black branes in asymptotically Lifshitz spacetimes with arbitrary dynamical exponent z and for arbitrary number of dimensions. The model considered consists of Einstein gravity with negative cosmological constant, a scalar, and N U(1) gauge fields with dilatonic-like couplings. We study the phase diagrams and thermodynamic instabilities of the solution, and find qualitative differences between the cases with 12.Comment: 27 pages, 10 figures; v2 references added, minor comments adde

    Nodeless superconductivity in Lu5-xRh6Sn18+x with broken time reversal symmetry

    Get PDF
    Evidence for broken time reversal symmetry (TRS) has been found in the superconducting states of the R 5 Rh 6 Sn 18 ( R = Sc , Y, Lu) compounds with a centrosymmetric caged crystal structure, but the origin of this phenomenon is unresolved. Here, we report neutron diffraction measurements of single crystals with R = Lu , as well as measurements of the temperature dependence of the magnetic penetration depth using a self-induced tunnel-diode-oscillator (TDO)-based technique, together with band structure calculations using density functional theory. Neutron diffraction measurements reveal that the system crystallizes in a tetragonal caged structure, and that one of the nominal Lu sites in the Lu 5 Rh 6 Sn 18 structure is occupied by Sn, yielding a composition Lu 5 − x Rh 6 Sn 18 + x ( x = 1 ). The low temperature penetration depth shift Δ λ ( T ) exhibits an exponential temperature dependence below around 0.3 T c , giving clear evidence for fully gapped superconductivity. The derived superfluid density is reasonably well accounted for by a single-gap s -wave model, whereas agreement cannot be found for models of TRS breaking states with two-component order parameters. Moreover, band structure calculations reveal multiple bands crossing the Fermi level, and indicate that the aforementioned TRS breaking states would be expected to have nodes on the Fermi surface, in contrast to the observations

    Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-identification

    Get PDF
    © 2020, Springer Nature Switzerland AG. Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Due to the large intra-class variations and cross-modality discrepancy with large amount of sample noise, it is difficult to learn discriminative part features. Existing VI-ReID methods instead tend to learn global representations, which have limited discriminability and weak robustness to noisy images. In this paper, we propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID. We propose an intra-modality weighted-part attention module to extract discriminative part-aggregated features, by imposing the domain knowledge on the part relationship mining. To enhance robustness against noisy samples, we introduce cross-modality graph structured attention to reinforce the representation with the contextual relations across the two modalities. We also develop a parameter-free dynamic dual aggregation learning strategy to adaptively integrate the two components in a progressive joint training manner. Extensive experiments demonstrate that DDAG outperforms the state-of-the-art methods under various settings

    On Charged Lifshitz Black Holes

    Full text link
    We obtain exact solutions of charged asymptotically Lifshitz black holes in arbitrary (d+2) dimensions, generalizing the four dimensional solution investigated in 0908.2611[hep-th]. We find that both the conventional Hamiltonian approach and the recently proposed method for defining mass in non-relativistic backgrounds do not work for this specific example. Thus the mass of the black hole can only be determined by the first law of thermodynamics. We also obtain perturbative solutions in five-dimensional Gauss-Bonnet gravity. The ratio of shear viscosity over entropy density and the DC conductivity are calculated in the presence of Gauss-Bonnet corrections.Comment: 24 pages, no figures, to appear in JHE

    Holographic zero sound at finite temperature in the Sakai-Sugimoto model

    Get PDF
    In this paper, we study the fate of the holographic zero sound mode at finite temperature and non-zero baryon density in the deconfined phase of the Sakai-Sugimoto model of holographic QCD. We establish the existence of such a mode for a wide range of temperatures and investigate the dispersion relation, quasi-normal modes, and spectral functions of the collective excitations in four different regimes, namely, the collisionless quantum, collisionless thermal, and two distinct hydrodynamic regimes. For sufficiently high temperatures, the zero sound completely disappears, and the low energy physics is dominated by an emergent diffusive mode. We compare our findings to Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references added, v3: some clarifications relating to the different regimes added, matches version accepted for publication in JHEP, v4: corrected typo in eq. (3.18

    Lifshitz black holes in string theory

    Full text link
    We provide the first black hole solutions with Lifshitz asymptotics found in string theory. These are expected to be dual to models enjoying anisotropic scale invariance with dynamical exponent z=2 at finite temperature. We employ a consistent truncation of type IIB supergravity to four dimensions with an arbitrary 5-dimensional Einstein manifold times a circle as internal geometry. New interesting features are found that significantly differ from previous results in phenomenological models. In particular, small black holes are shown to be thermodynamically unstable, analogously to the usual AdS-Schwarzschild black holes, and extremality is never reached. This signals a possible Hawking-Page like phase transition at low temperatures.Comment: 19 pages, 7 figures. v2 references adde
    corecore