1,441 research outputs found
Angles in Fuzzy Disc and Angular Noncommutative Solitons
The fuzzy disc, introduced by the authors of Ref.[1], is a disc-shaped region
in a noncommutative plane, and is a fuzzy approximation of a commutative disc.
In this paper we show that one can introduce a concept of angles to the fuzzy
disc, by using the phase operator and phase states known in quantum optics. We
gave a description of a fuzzy disc in terms of operators and their commutation
relations, and studied properties of angular projection operators. A similar
construction for a fuzzy annulus is also given. As an application, we
constructed fan-shaped soliton solutions of a scalar field theory on a fuzzy
disc, which corresponds to a fan-shaped D-brane. We also applied this concept
to the theory of noncommutative gravity that we proposed in Ref.[2]. In
addition, possible connections to black hole microstates, holography and an
experimental test of noncommutativity by laser physics are suggested.Comment: 24 pages, 12 figures; v2: minor mistake corrected in Eq.(3.21), and
discussion adapted accordingly; v3: a further discussion on the algebra of
the fuzzy disc added in subsection 3.2; v4: discussions improved and typos
correcte
Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas
We study the AC optical and hall conductivities of Dp/Dq-branes intersections
in the probe approximation and use sum-rules to study various associated
transport coefficients. We determine that the presence of massive fundamental
matter, as compared to massless fundamental matter described holographically by
a theory with no dimensional defects, reduces the plasma frequency. We further
show that this is not the case when the brane intersections include defects. We
discuss in detail how to implement correctly the regularization of retarded
Green's functions so that the dispersion relations are satisfied and the low
energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio
Holographic zero sound at finite temperature in the Sakai-Sugimoto model
In this paper, we study the fate of the holographic zero sound mode at finite
temperature and non-zero baryon density in the deconfined phase of the
Sakai-Sugimoto model of holographic QCD. We establish the existence of such a
mode for a wide range of temperatures and investigate the dispersion relation,
quasi-normal modes, and spectral functions of the collective excitations in
four different regimes, namely, the collisionless quantum, collisionless
thermal, and two distinct hydrodynamic regimes. For sufficiently high
temperatures, the zero sound completely disappears, and the low energy physics
is dominated by an emergent diffusive mode. We compare our findings to
Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references
added, v3: some clarifications relating to the different regimes added,
matches version accepted for publication in JHEP, v4: corrected typo in eq.
(3.18
Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT
We present holographic descriptions of thermalization in conformal field
theories using probe D-branes in AdS X S space-times. We find that the induced
metrics on Dp-brane worldvolumes which are rotating in an internal sphere
direction have horizons with characteristic Hawking temperatures even if there
is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such
systems indeed reveals thermal properties such as Brownian motions and AC
conductivities in the dual conformal field theories. We also use this framework
to holographically analyze time-dependent systems undergoing a quantum quench,
where parameters in quantum field theories, such as a mass or a coupling
constant, are suddenly changed. We confirm that this leads to thermal behavior
by demonstrating the formation of apparent horizons in the induced metric after
a certain time.Comment: LaTeX, 47 pages, 14 figures; Typos corrected and references added
(v2); minor corrections, references added(v3
The Hydration Structure at Yttria-Stabilized Cubic Zirconia (110)-Water Interface with Sub-Angstrom Resolution
The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas the second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. The multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.ope
Zero Sound in Strange Metallic Holography
One way to model the strange metal phase of certain materials is via a
holographic description in terms of probe D-branes in a Lifshitz spacetime,
characterised by a dynamical exponent z. The background geometry is dual to a
strongly-interacting quantum critical theory while the probe D-branes are dual
to a finite density of charge carriers that can exhibit the characteristic
properties of strange metals. We compute holographically the low-frequency and
low-momentum form of the charge density and current retarded Green's functions
in these systems for massless charge carriers. The results reveal a
quasi-particle excitation when z<2, which in analogy with Landau Fermi liquids
we call zero sound. The real part of the dispersion relation depends on
momentum k linearly, while the imaginary part goes as k^2/z. When z is greater
than or equal to 2 the zero sound is not a well-defined quasi-particle. We also
compute the frequency-dependent conductivity in arbitrary spacetime dimensions.
Using that as a measure of the charge current spectral function, we find that
the zero sound appears only when the spectral function consists of a single
delta function at zero frequency.Comment: 20 pages, v2 minor corrections, extended discussion in sections 5 and
6, added one footnote and four references, version published in JHE
Holographic DC conductivities from the open string metric
We study the DC conductivities of various holographic models using the open
string metric (OSM), which is an effective metric geometrizing density and
electromagnetic field effect. We propose a new way to compute the nonlinear
conductivity using OSM. As far as the final conductivity formula is concerned,
it is equivalent to the Karch-O'Bannon's real-action method. However, it yields
a geometrical insight and technical simplifications. Especially, a real-action
condition is interpreted as a regular geometry condition of OSM. As
applications of the OSM method, we study several holographic models on the
quantum Hall effect and strange metal. By comparing a Lifshitz background and
the Light-Cone AdS, we show how an extra parameter can change the temperature
scaling behavior of conductivity. Finally we discuss how OSM can be used to
study other transport coefficients, such as diffusion constant, and effective
temperature induced by the effective world volume horizon.Comment: 33 page
Gauge gravity duality for d-wave superconductors: prospects and challenges
We write down an action for a charged, massive spin two field in a fixed
Einstein background. Despite some technical problems, we argue that in an
effective field theory framework and in the context of the AdS/CFT
correspondence, this action can be used to study the properties of a superfluid
phase transition with a d-wave order parameter in a dual strongly interacting
field theory. We investigate the phase diagram and the charge conductivity of
the superfluid phase. We also explain how possible couplings between the spin
two field and bulk fermions affect the fermion spectral function.Comment: 42 pages, 6 figure
Zero Sound in Effective Holographic Theories
We investigate zero sound in -dimensional effective holographic theories,
whose action is given by Einstein-Maxwell-Dilaton terms. The bulk spacetimes
include both zero temperature backgrounds with anisotropic scaling symmetry and
their near-extremal counterparts obtained in 1006.2124 [hep-th], while the
massless charge carriers are described by probe D-branes. We discuss
thermodynamics of the probe D-branes analytically. In particular, we clarify
the conditions under which the specific heat is linear in the temperature,
which is a characteristic feature of Fermi liquids. We also compute the
retarded Green's functions in the limit of low frequency and low momentum and
find quasi-particle excitations in certain regime of the parameters. The
retarded Green's functions are plotted at specific values of parameters in
, where the specific heat is linear in the temperature and the
quasi-particle excitation exists. We also calculate the AC conductivity in
-dimensions as a by-product.Comment: 29 pages, 1 figur
- âŠ