1,334 research outputs found

    Linear brain atrophy measures in multiple sclerosis and clinically isolated syndromes: A 30-year follow-up

    Get PDF
    OBJECTIVE: To determine 30-year brain atrophy rates following clinically isolated syndromes and the relationship of atrophy in the first 5 years and clinical outcomes 25 years later. METHODS: A cohort of 132 people who presented with a clinically isolated syndrome suggestive of multiple sclerosis (MS) were recruited between 1984–1987. Clinical and MRI data were collected prospectively over 30 years. Widths of the third ventricle and the medulla oblongata were used as linear atrophy measures. RESULTS: At 30 years, 27 participants remained classified as having had a clinically isolated syndrome, 34 converted to relapsing remitting MS, 26 to secondary progressive MS and 16 had died due to MS. The mean age at baseline was 31.7 years (SD 7.5) and the mean disease duration was 30.8 years (SD 0.9). Change in medullary and third ventricular width within the first 5 years, allowing for white matter lesion accrual and Expanded Disability Status Scale increases over the same period, predicted clinical outcome measures at 30 years. 1 mm of medullary atrophy within the first 5 years increased the risk for secondary progressive MS or MS related death by 30 years by 583% (OR 5.83, 95% CI 1.74 to 19.61, p<0.005), using logistic regression. CONCLUSIONS: Our findings show that brain regional atrophy within 5 years of a clinically isolated syndrome predicts progressive MS or a related death, and disability 25 years later

    Sequence learning in Associative Neuronal-Astrocytic Network

    Full text link
    The neuronal paradigm of studying the brain has left us with limitations in both our understanding of how neurons process information to achieve biological intelligence and how such knowledge may be translated into artificial intelligence and its most brain-derived branch, neuromorphic computing. Overturning our fundamental assumptions of how the brain works, the recent exploration of astrocytes is revealing that these long-neglected brain cells dynamically regulate learning by interacting with neuronal activity at the synaptic level. Following recent experimental evidence, we designed an associative, Hopfield-type, neuronal-astrocytic network and analyzed the dynamics of the interaction between neurons and astrocytes. We show that astrocytes were sufficient to trigger transitions between learned memories in the neuronal component of the network. Further, we mathematically derived the timing of the transitions that was governed by the dynamics of the calcium-dependent slow-currents in the astrocytic processes. Overall, we provide a brain-morphic mechanism for sequence learning that is inspired by, and aligns with, recent experimental findings. To evaluate our model, we emulated astrocytic atrophy and showed that memory recall becomes significantly impaired after a critical point of affected astrocytes was reached. This brain-inspired and brain-validated approach supports our ongoing efforts to incorporate non-neuronal computing elements in neuromorphic information processing.Comment: 8 pages, 5 figure

    Crosstalk between histone modifications and DNA methylation in patients with intellectual disability due to JARID1C mutations

    Get PDF
    CCMG Oral Abstract Presentations – Commonwealth A: A01The X-linked gene, JARID1C, encodes a H3K4 demethylase. Mutations in this gene cause intellectual disability (ID). We hypothesized that JARID1C mutations would dysregulate DNA methylation at specific genomic targets ...postprintThe 34th Annual Scientific Meeting of the Canadian College of Medical Geneticists (CCMG 2010), Halifax, NS., 21-23 October 2010. In Abstract Book of the 34th CCMG, 2010, p.

    A thirty year clinical and MRI observational study of multiple sclerosis and clinically isolated syndromes

    Get PDF
    OBJECTIVE: Clinical outcomes in multiple sclerosis (MS) are highly variable. We aim to determine the long-term clinical outcomes in MS, and to identify early prognostic features of these outcomes. METHODS: 132 people presenting with a clinically isolated syndrome (CIS) were prospectively recruited between 1984-87, and followed up clinically and radiologically 1, 5, 10, 14, 20 and now 30 years later. All available notes and magnetic resonance imaging (MRI) scans were reviewed, and MS was defined according to the 2010 McDonald criteria. RESULTS: Clinical outcome data was obtained in 120 participants at 30 years. Eighty were known to have developed MS by 30 years. Expanded disability status scale (EDSS) scores were available in 107 participants, of whom 77 had MS: thirty-two (42%) remained fully ambulatory (EDSS ≤3.5) all of whom had relapsing-remitting MS (RRMS), three (4%) had RRMS and EDSS >3.5, 26 (34%) had secondary progressive MS (all had EDSS >3.5), and MS contributed to death in 16 (20%). Of those with MS, 11 have been treated with a DMT. The strongest early predictors (within 5 years of presentation) of secondary progressive MS (SPMS) at 30 years were presence of baseline infratentorial lesions and deep white matter lesions at one year. INTERPRETATION: Thirty years after onset, in a largely untreated cohort, there was a divergence of MS outcomes; some people accrued substantial disability early on, while others ran a more favourable long-term course. These outcomes could, in part, be predicted by radiological findings from within a year of first presentation

    Genetic polymorphisms of DNA double strand break gene Ku70 and gastric cancer in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background and aim</p> <p>The DNA repair gene <it>Ku70</it>, an important member of non-homologous end-joining repair system, is thought to play an important role in the repairing of DNA double strand breaks. It is known that defects in double strand break repair capacity can lead to irreversible genomic instability. However, the polymorphic variants of <it>Ku70</it>, have never been reported about their association with gastric cancer susceptibility.</p> <p>Methods</p> <p>In this hospital-based case-control study, the associations of <it>Ku70 </it>promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter A-31G (rs132770), and intron 3 (rs132774) polymorphisms with gastric cancer risk in a Taiwanese population were investigated. In total, 136 patients with gastric cancer and 560 age- and gender-matched healthy controls recruited from the China Medical Hospital in Taiwan were genotyped.</p> <p>Results</p> <p>As for <it>Ku70 </it>promoter T-991C, the ORs after adjusted by age and gender of the people carrying TC and CC genotypes were 2.41 (95% CI = 1.53-3.88) and 3.21 (95% CI = 0.96-9.41) respectively, compared to those carrying TT wild-type genotype. The <it>P </it>for trend was significant (<it>P </it>< 0.0001). In the dominant model (TC plus CC versus TT), the association between <it>Ku70 </it>promoter T-991C polymorphism and the risk for gastric cancer was also significant (adjusted OR = 2.48, 95% CI = 1.74-3.92). When stratified by age and gender, the association was restricted to those at the age of 55 or elder of age (TC vs TT: adjusted OR = 2.52, 95% CI = 1.37-4.68, <it>P </it>= 0.0139) and male (TC vs TT: adjusted OR = 2.58, 95% CI = 1.33-4.47, <it>P </it>= 0.0085). As for the other three polymorphisms, there was no difference between both groups in the distributions of their genotype frequencies.</p> <p>Conclusion</p> <p>In conclusion, the <it>Ku70 </it>promoter T-991C (rs5751129), but not the <it>Ku70 </it>promoter C-57G (rs2267437), promoter A-31G (rs132770) or intron 3 (rs132774), is associated with gastric cancer susceptibility. This polymorphism may be a novel useful marker for gastric carcinogenesis.</p

    Volumetric reconstruction from printed films: Enabling 30 year longitudinal analysis in MR neuroimaging

    Get PDF
    Hospitals often hold historical MR image data printed on films without being able to make it accessible to modern image processing techniques. Having the possibility to recover geometrically consistent, volumetric images from scans acquired decades ago will enable more comprehensive, longitudinal studies to understand disease progressions. In this paper, we propose a consistent framework to reconstruct a volumetric representation from printed films holding thick single-slice brain MR image acquisitions dating back to the 1980's. We introduce a flexible framework based on semi-automatic slice extraction, followed by automated slice-to-volume registration with inter-slice transformation regularisation and slice intensity correction. Our algorithm is robust against numerous detrimental effects being present in archaic films. A subsequent, isotropic total variation deconvolution technique revitalises the visual appearance of the obtained volumes. We assess the accuracy and perform the validation of our reconstruction framework on a uniquely long-term MRI dataset where a ground-truth is available. This method will be used to facilitate a robust longitudinal analysis spanning 30 years of MRI scans

    Molecular basis of FIR-mediated c-myc transcriptional control

    Get PDF
    The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.MRC Grant-in-aid U11757455

    The Sphaleron Rate in SU(N) Gauge Theory

    Full text link
    The sphaleron rate is defined as the diffusion constant for topological number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure
    • …
    corecore