192 research outputs found

    Creatine supplementation post-exercise does not enhance training-induced adaptations in middle to older aged males

    Get PDF
    PURPOSE: The present study evaluated the effects of creatine monohydrate (CrM) consumption post-exercise on body composition and muscle strength in middle to older males following a 12-week resistance training program. METHODS: In a double-blind, randomized trial, 20 males aged between 55 and 70 years were randomly assigned to consume either CrM-carbohydrate (CHO) [20 g days(−1) CrM + 5 g days(−1) CHO × 7 days, then 0.1 g kg(−1) CrM + 5 g CHO on training days (average dosage of ~8.8 g)] or placebo CHO (20 g days(−1) CHO × 7 days, then 5 g CHO on training days) while participating in a high intensity resistance training program [3 sets × 10 repetitions at 75 % of 1 repetition maximum (1RM)], 3 days weeks(−1) for 12 weeks. Following the initial 7-day “loading” phase, participants were instructed to ingest their supplement within 60 min post-exercise. Body composition and muscle strength measurements, blood collection and vastus lateralis muscle biopsy were completed at 0, 4, 8 and 12 weeks of the supplement and resistance training program. RESULTS: A significant time effect was observed for 1RM bench press (p = 0.016), leg press (p = 0.012), body mass (p = 0.03), fat-free mass (p = 0.005) and total myofibrillar protein (p = 0.005). A trend for larger muscle fiber cross-sectional area in the type II fibers compared to type I fibers was observed following the 12-week resistance training (p = 0.08). No supplement interaction effects were observed. CONCLUSION: Post-exercise ingestion of creatine monohydrate does not provide greater enhancement of body composition and muscle strength compared to resistance training alone in middle to older males

    Nine weeks of supplementation with a multi-nutrient product augments gains in lean mass, strength, and muscular performance in resistance trained men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare the effects of supplementation with Gaspari Nutrition's SOmaxP Maximum Performanceℱ (SOmaxP) versus a comparator product (CP) containing an equal amount of creatine (4 g), carbohydrate (39 g maltodextrin), and protein (7 g whey protein hydrolysate) on muscular strength, muscular endurance, and body composition during nine weeks of intense resistance training.</p> <p>Methods</p> <p>Using a prospective, randomized, double-blind design, 20 healthy men (mean ± SD age, height, weight, % body fat: 22.9 ± 2.6 y, 178.4 ± 5.7 cm, 80.5 ± 6.6 kg, 16.6 ± 4.0%) were matched for age, body weight, resistance training history, bench press strength, bench press endurance, and percent body fat and then randomly assigned via the ABBA procedure to ingest 1/2 scoop (dissolved in 15 oz water) of SOmaxP or CP prior to, and another 1/2 scoop (dissolved in 15 oz water) during resistance exercise. Body composition (DEXA), muscular performance (1-RM bench press and repetitions to failure [RTF: 3 sets × baseline body weight, 60-sec rest between sets]), and clinical blood chemistries were measured at baseline and after nine weeks of supplementation and training. Subjects were required to maintain their normal dietary habits and follow a specific, progressive overload resistance training program (4-days/wk, upper body/lower body split) during the study. An intent-to-treat approach was used and data were analyzed via ANCOVA using baseline values as the covariate. Statistical significance was set <it>a priori </it>at p ≀ 0.05.</p> <p>Results</p> <p>When adjusted for initial differences, significant between group post-test means were noted in: 1-RM bench press (SOmaxP: 133.3 ± 1.3 kg [19.8% increase] vs. CP: 128.5 ± 1.3 kg [15.3% increase]; p < 0.019); lean mass (SOmaxP: 64.1 ± 0.4 kg [2.4% increase] vs. 62.8 ± 0.4 kg [0.27% increase], p < 0.049); RTF (SOmaxP: 33.3 ± 1.1 reps [44.8% increase] vs. 27.8 ± 1.1 reps [20.9% increase], p < 0.004); and fat mass (SOmaxP: 12.06 ± 0.53 kg [9.8% decrease] vs. 13.90 ± 0.53 kg [4.1% increase], p < 0.024). No statistically significant differences in vital signs (heart rate, systolic and diastolic blood pressures) or clinical blood chemistries were noted.</p> <p>Conclusions</p> <p>These data indicate that compared to CP, SOmaxP administration augments and increases gains in lean mass, bench press strength, and muscular performance during nine weeks of intense resistance training. Studies designed to confirm these results and clarify the molecular mechanisms by which SOmaxP exerts the observed salutary effects have begun. Both SOmaxP and the CP were well-tolerated, and no supplement safety issues were identified.</p

    Effunet-spagen: An efficient and spatial generative approach to glaucoma detection

    Get PDF
    Current research in automated disease detection focuses on making algorithms “slimmer” reducing the need for large training datasets and accelerating recalibration for new data while achieving high accuracy. The development of slimmer models has become a hot research topic in medical imaging. In this work, we develop a two-phase model for glaucoma detection, identifying and exploiting a redundancy in fundus image data relating particularly to the geometry. We propose a novel algorithm for the cup and disc segmentation “EffUnet” with an efficient convolution block and combine this with an extended spatial generative approach for geometry modelling and classification, termed “SpaGen” We demonstrate the high accuracy achievable by EffUnet in detecting the optic disc and cup boundaries and show how our algorithm can be quickly trained with new data by recalibrating the EffUnet layer only. Our resulting glaucoma detection algorithm, “EffUnet-SpaGen”, is optimized to significantly reduce the computational burden while at the same time surpassing the current state-of-art in glaucoma detection algorithms with AUROC 0.997 and 0.969 in the benchmark online datasets ORIGA and DRISHTI, respectively. Our algorithm also allows deformed areas of the optic rim to be displayed and investigated, providing explainability, which is crucial to successful adoption and implementation in clinical settings

    Nutrient Administration and Resistance Training

    Get PDF
    Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. [1-3] After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.[1,3] Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis

    Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI) and decreasing rest intervals (DI) between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR).</p> <p>Methods</p> <p>Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm) or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm). Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets). Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA) of the right thigh and upper arm was measured using magnetic resonance imaging.</p> <p>Results</p> <p>Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≀ 0.0001); however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group.</p> <p>Conclusions</p> <p>We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the CI group versus the DI group, yet strength gains were similar, the creatine supplementation appeared to bolster adaptations for the DI group, even in the presence of significantly less volume. However, further research is needed with the inclusion of a control group not receiving supplementation combined and resistance training with decreasing rest intervals to further elucidate such hypotheses.</p

    Effects of Methoxyisoflavone, Ecdysterone, and Sulfo-Polysaccharide Supplementation on Training Adaptations in Resistance-Trained Males

    Get PDF
    PURPOSE: Methoxyisoflavone (M), 20-hydroxyecdysone (E), and sulfo-polysaccharide (CSP3) have been marketed to athletes as dietary supplements that can increase strength and muscle mass during resistancetraining. However, little is known about their potential ergogenic value. The purpose of this study was to determine whether these supplements affect training adaptations and/or markers of muscle anabolism/catabolism in resistance-trained athletes. METHODS: Forty-five resistance-trained males (20.5±3 yrs; 179±7 cm, 84±16 kg, 17.3±9 % body fat) were matched according to FFM and randomly assigned to ingest in a double blind manner supplements containing either a placebo (P); 800 mg/day of M; 200 mg of E; or, 1,000 mg/day of CSP3 for 8-weeks during training. At 0, 4, and 8-weeks, subjects donated fasting blood samples and completed comprehensive muscular strength, muscular endurance, anaerobic capacity, and body composition analysis. Data were analyzed by repeated measures ANOVA. RESULTS: No significant differences (p&gt;0.05) were observed in training adaptations among groups in the variables FFM, percent body fat, bench press 1RM, leg press 1RM or sprint peak power. Anabolic/catabolic analysis revealed no significant differences among groups in active testosterone (AT), free testosterone (FT), cortisol, the AT to cortisol ratio, urea nitrogen, creatinine, the blood urea nitrogen to creatinine ratio. In addition, no significant differences were seen from pr

    Analysis of the efficacy, safety, and regulatory status of novel forms of creatine

    Get PDF
    Creatine has become one of the most popular dietary supplements in the sports nutrition market. The form of creatine that has been most extensively studied and commonly used in dietary supplements is creatine monohydrate (CM). Studies have consistently indicated that CM supplementation increases muscle creatine and phosphocreatine concentrations by approximately 15–40%, enhances anaerobic exercise capacity, and increases training volume leading to greater gains in strength, power, and muscle mass. A number of potential therapeutic benefits have also been suggested in various clinical populations. Studies have indicated that CM is not degraded during normal digestion and that nearly 99% of orally ingested CM is either taken up by muscle or excreted in urine. Further, no medically significant side effects have been reported in literature. Nevertheless, supplement manufacturers have continually introduced newer forms of creatine into the marketplace. These newer forms have been purported to have better physical and chemical properties, bioavailability, efficacy, and/or safety profiles than CM. However, there is little to no evidence that any of the newer forms of creatine are more effective and/or safer than CM whether ingested alone and/or in combination with other nutrients. In addition, whereas the safety, efficacy, and regulatory status of CM is clearly defined in almost all global markets; the safety, efficacy, and regulatory status of other forms of creatine present in today’s marketplace as a dietary or food supplement is less clear

    The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle soreness and decreased performance often follow a bout of high-intensity exercise. By reducing these effects, an athlete can train more frequently and increase long-term performance. The purpose of this study is to examine whether a high-potency, black tea extract (BTE) alters the delayed onset muscle soreness (DOMS), oxidative stress, inflammation, and cortisol (CORT) responses to high-intensity anaerobic exercise.</p> <p>Methods</p> <p>College-age males (N = 18) with 1+ yrs of weight training experience completed a double-blind, placebo-controlled, crossover study. Subjects consumed the BTE (1,760 mg BTE·d<sup>-1</sup>) or placebo (PLA) for 9 days. Each subject completed two testing sessions (T1 & T2), which occurred on day 7 of the intervention. T1 & T2 consisted of a 30 s Wingate Test plus eight 10 s intervals. Blood samples were obtained before, 0, 30 & 60 min following the interval sessions and were used to analyze the total to oxidized glutathione ratio (GSH:GSSG), 8-isoprostane (8-iso), CORT, and interleukin 6 (IL-6) secretion. DOMS was recorded at 24 & 48 h post-test using a visual analog scale while BTE or PLA continued to be administered. Significance was set at <it>P < 0.05</it>.</p> <p>Results</p> <p>Compared to PLA, BTE produced significantly higher average peak power (<it>P = 0.013</it>) and higher average mean power (<it>P = 0.067</it>) across nine WAnT intervals. BTE produced significantly lower DOMS compared to PLA at 24 h post test (<it>P < 0.001</it>) and 48 h post test (<it>P < 0.001</it>). Compared to PLA, BTE had a slightly higher GSH:GSSG ratio at baseline which became significantly higher at 30 and 60 min post test (<it>P < 0.002</it>). AUC analysis revealed BTE to elicit significantly lower GSSG secretion (<it>P = 0.009</it>), significantly higher GSH:GSSG ratio (<it>P = 0.001</it>), and lower CORT secretion (<it>P = 0.078</it>) than PLA. AUC analysis did not reveal a significant difference in total IL-6 response (<it>P = 0.145</it>) between conditions.</p> <p>Conclusions</p> <p>Consumption of theaflavin-enriched black tea extract led to improved recovery and a reduction in oxidative stress and DOMS responses to acute anaerobic intervals. An improved rate of recovery can benefit all individuals engaging in high intensity, anaerobic exercise as it facilitates increased frequency of exercise.</p

    Beneficial Effects of a Q-terÂź Based Nutritional Mixture on Functional Performance, Mitochondrial Function, and Oxidative Stress in Rats

    Get PDF
    Mitochondrial dysfunction and oxidative stress are central mechanisms underlying the aging process and the pathogenesis of many age-related diseases. Selected antioxidants and specific combinations of nutritional compounds could target many biochemical pathways that affect both oxidative stress and mitochondrial function and, thereby, preserve or enhance physical performance. supplementation in rats at 29 months of age. supplementation may be particularly beneficial when initiated prior to major biological and functional declines that appear to occur with advancing age

    The Effect of Anandamide on Uterine Nitric Oxide Synthase Activity Depends on the Presence of the Blastocyst

    Get PDF
    Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot−1 h−1) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies
    • 

    corecore