4,293 research outputs found

    Lethal zoonotic coronavirus infections of humans - comparative phylogenetics, epidemiology, transmission, and clinical features of coronavirus disease 2019, The Middle East respiratory syndrome and severe acute respiratory syndrome

    Get PDF
    Purpose of review: Severe acute respiratory syndrome-coronaviruses-2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), emerged as a new zoonotic pathogen of humans at the end of 2019 and rapidly developed into a global pandemic. Over 106 million COVID-19 cases including 2.3 million deaths have been reported to the WHO as of February 9, 2021. This review examines the epidemiology, transmission, clinical features, and phylogenetics of three lethal zoonotic coronavirus infections of humans: SARS-CoV-1, SARS-CoV-2, and The Middle East respiratory syndrome coronavirus (MERS-COV). Recent findings: Bats appear to be the common natural source of SARS-like CoV including SARS-CoV-1 but their role in SARS-CoV-2 and MERS-CoV remains unclear. Civet cats and dromedary camels are the intermediary animal sources for SARS-CoV-1 and MERS-CoV infection, respectively whereas that of SARS-CoV-2 remains unclear. SARS-CoV-2 viral loads peak early on days 2–4 of symptom onset and thus high transmission occurs in the community, and asymptomatic and presymptomatic transmission occurs commonly. Nosocomial outbreaks are hallmarks of SARS-CoV-1 and MERS-CoV infections whereas these are less common in COVID-19. Several COVID-19 vaccines are now available. Summary: Of the three lethal zoonotic coronavirus infections of humans, SARS-CoV-2 has caused a devastating global pandemic with over a million deaths. The emergence of genetic variants, such as D614G, N501Y (variants 1 and 2), has led to an increase in transmissibility and raises concern about the possibility of re-infection and impaired vaccine response. Continued global surveillance is essential for both SARS-CoV-2 and MERS-CoV, to monitor changing epidemiology due to viral variants

    Ultrasound-mediated optical tomography: a review of current methods

    No full text
    Ultrasound-mediated optical tomography (UOT) is a hybrid technique that is able to combine the high penetration depth and high spatial resolution of ultrasound imaging to overcome the limits imposed by optical scattering for deep tissue optical sensing and imaging. It has been proposed as a method to detect blood concentrations, oxygenation and metabolism at depth in tissue for the detection of vascularized tumours or the presence of absorbing or scattering contrast agents. In this paper, the basic principles of the method are outlined and methods for simulating the UOT signal are described. The main detection methods are then summarized with a discussion of the advantages and disadvantages of each. The recent focus on increasing the weak UOT signal through the use of the acoustic radiation force is explained, together with a summary of our results showing sensitivity to the mechanical shear stiffness and optical absorption properties of tissue-mimicking phantoms

    Qualitative Real-Time Schlieren and Shadowgraph Imaging of Human Exhaled Airflows: An Aid to Aerosol Infection Control

    Get PDF
    Using a newly constructed airflow imaging system, airflow patterns were visualized that were associated with common, everyday respiratory activities (e.g. breathing, talking, laughing, whistling). The effectiveness of various interventions (e.g. putting hands and tissues across the mouth and nose) to reduce the potential transmission of airborne infection, whilst coughing and sneezing, were also investigated. From the digital video footage recorded, it was seen that both coughing and sneezing are relatively poorly contained by commonly used configurations of single-handed shielding maneuvers. Only some but not all of the forward momentum of the cough and sneeze puffs are curtailed with various hand techniques, and the remaining momentum is disseminated in a large puff in the immediate vicinity of the cougher, which may still act as a nearby source of infection. The use of a tissue (in this case, 4-ply, opened and ready in the hand) proved to be surprisingly effective, though the effectiveness of this depends on the tissue remaining intact and not ripping apart. Interestingly, the use of a novel ‘coughcatcher’ device appears to be relatively effective in containing coughs and sneezes. One aspect that became evident during the experimental procedures was that the effectiveness of all of these barrier interventions is very much dependent on the speed with which the user can put them into position to cover the mouth and nose effectively

    Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity

    Get PDF
    We report the synthesis and photoelectrochemical assessment of phase pure tetragonal matlockite structured BiOX (where X = Cl, Br, I) films. The materials were deposited using aerosol-assisted chemical vapour deposition. The measured optical bandgaps of the oxyhalides, supported by density functional theory calculations, showed a red shift with the increasing size of halide following the binding energy of the anion p-orbitals that form the valence band. Stability and photoelectrochemical studies carried out without a sacrificial electron donor showed the n-type BiOBr film to have the highest photocurrent reported for BiOBr in the literature to date (0.3 mA cm−2 at 1.23 V vs. RHE), indicating it is an excellent candidate for solar fuel production with a very low onset potential of 0.2 V vs. RHE. The high performance was attributed to the preferred growth of the film in the [011] direction, as shown by X-ray diffraction, leading to internal electric fields that minimize charge carrier recombination

    Quantification of the performance of chaotic micromixers on the basis of finite time Lyapunov exponents

    Get PDF
    Chaotic micromixers such as the staggered herringbone mixer developed by Stroock et al. allow efficient mixing of fluids even at low Reynolds number by repeated stretching and folding of the fluid interfaces. The ability of the fluid to mix well depends on the rate at which "chaotic advection" occurs in the mixer. An optimization of mixer geometries is a non trivial task which is often performed by time consuming and expensive trial and error experiments. In this paper an algorithm is presented that applies the concept of finite-time Lyapunov exponents to obtain a quantitative measure of the chaotic advection of the flow and hence the performance of micromixers. By performing lattice Boltzmann simulations of the flow inside a mixer geometry, introducing massless and non-interacting tracer particles and following their trajectories the finite time Lyapunov exponents can be calculated. The applicability of the method is demonstrated by a comparison of the improved geometrical structure of the staggered herringbone mixer with available literature data.Comment: 9 pages, 8 figure

    Prevention of elastase-induced emphysema in placenta growth factor knock-out mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.</p> <p>Methods</p> <p>Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.</p> <p>Results</p> <p>After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.</p> <p>Conclusion</p> <p>In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.</p

    Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods

    Get PDF
    Terrestrial carbon–climate feedbacks depend on two large and opposing fluxes—soil organic matter decomposition and photosynthesis—that are tightly regulated by nutrients . Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 5 represented nutrient dynamics poorly , rendering predictions of twenty-first century carbon–climate feedbacks highly uncertain. Here, we use a new land model to quantify the effects of observed plant nutrient uptake mechanisms missing in most other ESMs. In particular, we estimate the global role of root nutrient competition with microbes and abiotic processes during periods without photosynthesis. Nitrogen and phosphorus uptake during these periods account for 45 and 43%, respectively, of annual uptake, with large latitudinal variation. Globally, night-time nutrient uptake dominates this signal. Simulations show that ignoring this plant uptake, as is done when applying an instantaneous relative demand approach, leads to large positive biases in annual nitrogen leaching (96%) and N O emissions (44%). This N O emission bias has a GWP equivalent of ~2.4 PgCO yr , which is substantial compared to the current terrestrial CO sink. Such large biases will lead to predictions of overly open terrestrial nutrient cycles and lower carbon sequestration capacity. Both factors imply over-prediction of positive terrestrial feedbacks with climate in current ESMs. 1,2 1,3 −1 2 2 2
    corecore