25 research outputs found

    Bubble transport by electro-magnetophoretic forces at anode bottom of aluminium cells

    Get PDF
    Electrically conducting and nonconducting particles and bubbles experience additional forcing in a liquid which carries electric current. These so called electro-magnetophoretic forces are well known in metallurgical applications, like metal purification in vacuum-arc remelting, electro-slag processes, impurity removal or concentration change in special castings. However, the effect of electro-magnetophoretic forces has never been considered for aluminium cells where the gas bubbles evolving in the liquid electrolyte are surrounded by an electric current and significant magnetic fields. We present models to estimate the effect of electric current flow in the vicinity of the bubbles and the additional pressure distribution resulting from the magnetic forces in the surrounding liquid electrolyte. According to the estimates, this force becomes important for bubbles exceeding 2 mm in size, and could be sufficient to overcome the typical drag force associated with electrolyte flow thereby opposing motion of the bubble along the base of the anode when it is inclined at a slight angle. The effect could explain certain features of the anode effect onset. Mathematical models and numerical results are presented and a further implementation in the general MHD code for the aluminium cell design is discussed

    A dynamic process model for predicting the performance of horizontal anode baking furnaces

    Get PDF
    Anode manufacturing is an important step during the production of primary aluminum, and baking is the costliest stage of the anode manufacturing process. The industrial challenge resides in obtaining a good anode quality while keeping the energy consumption, environmental emissions, and cost to minimum. A dynamic process model has been developed for horizontal anode baking furnaces. It covers all important phenomena such as fuel combustion, generation and combustion of volatiles (tar, methane, and hydrogen), air infiltration, and heat losses to the atmosphere and the foundation. The model was built using two coupled sub-models of the flue and the pit and was validated using the plant data. It simulates the dynamic behavior of the furnace and gives a prediction of its operation and performance. In this article, the modelling approach will be described, and the results of a number of case studies will be presented

    Description and applications of a 3D mathematical model for horizontal anode baking furnaces

    Get PDF
    In aluminum industry, carbon anodes are consumed continuously during alumina reduction in the electrolysis cells. Anodes are made of calcined coke, butt, and recycled anode particles and pitch as the binder. Green anodes are baked in large furnaces where they attain specific properties in terms of density, mechanical strength, and electrical conductivity. Baking is an important and costly step in carbon anode production. The proper operation of the furnace provides the required anode quality. Mathematical modeling allows the prediction of the heating profile of anodes during baking. Taking into account all the relevant phenomena, a 3D transient mathematical model was developed to simulate the different stages of the baking process in the furnace. The predictions give a detailed view of the furnace operation and performance. In this article, the 3D model is described, and the results on the impact of various parameters on furnace behavior are presented

    Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature

    Get PDF
    The resurgence of the malaria eradication agenda and the increasing number of severe manifestation reports has contributed to a renewed interested in the Plasmodium vivax infection. It is the most geographically widespread parasite causing human malaria, with around 2.85 billion people living under risk of infection. The Brazilian Amazon region reports more than 50% of the malaria cases in Latin America and since 1990 there is a marked predominance of this species, responsible for 85% of cases in 2009. However, only a few complicated cases of P. vivax have been reported from this region. A systematic review of the Brazilian indexed and non-indexed literature on complicated cases of vivax malaria was performed including published articles, masters' dissertations, doctoral theses and national congresses' abstracts. The following information was retrieved: patient characteristics (demographic, presence of co-morbidities and, whenever possible, associated genetic disorders); description of each major clinical manifestation. As a result, 27 articles, 28 abstracts from scientific events' annals and 13 theses/dissertations were found, only after 1987. Most of the reported information was described in small case series and case reports of patients from all the Amazonian states, and also in travellers from Brazilian non-endemic areas. The more relevant clinical complications were anaemia, thrombocytopaenia, jaundice and acute respiratory distress syndrome, present in all age groups, in addition to other more rare clinical pictures. Complications in pregnant women were also reported. Acute and chronic co-morbidities were frequent, however death was occasional. Clinical atypical cases of malaria are more frequent than published in the indexed literature, probably due to a publication bias. In the Brazilian Amazon (considered to be a low to moderate intensity area of transmission), clinical data are in accordance with the recent findings of severity described in diverse P. vivax endemic areas (especially anaemia in Southeast Asia), however in this region both children and adults are affected. Finally, gaps of knowledge and areas for future research are opportunely pointed out
    corecore