110 research outputs found

    Synthesis and in vitro antiproliferative activity of novel (4-chloro- and 4-acyloxy-2-butynyl)thioquinolines

    Get PDF
    The series of new acetylenic thioquinolines containing propargyl, 4-chloro-2-butynyl, and 4-acyloxy-2-butynyl groups have been prepared and tested for antiproliferative activity in vitro against human [SW707 (colorectal adenocarcinoma), CCRF/CEM (leukemia), T47D (breast cancer)] and murine [P388 (leukemia), B16 (melanoma)] cancer lines. Most of the obtained compounds exhibited antiproliferative activity, especially compounds 8, 12, and 21 showed the ID50 values ranging from 0.4 to 3.8 μg/ml comparable to that of cisplatin used as reference compounds

    Bcl-2 Inhibits the Innate Immune Response during Early Pathogenesis of Murine Congenital Muscular Dystrophy

    Get PDF
    Laminin α2 (LAMA2)-deficient congenital muscular dystrophy is a severe, early-onset disease caused by abnormal levels of laminin 211 in the basal lamina leading to muscle weakness, transient inflammation, muscle degeneration and impaired mobility. In a Lama2-deficient mouse model for this disease, animal survival is improved by muscle-specific expression of the apoptosis inhibitor Bcl-2, conferred by a MyoD-hBcl-2 transgene. Here we investigated early disease stages in this model to determine initial pathological events and effects of Bcl-2 on their progression. Using quantitative immunohistological and mRNA analyses we show that inflammation occurs very early in Lama2-deficient muscle, some aspects of which are reduced or delayed by the MyoD-hBcl-2 transgene. mRNAs for innate immune response regulators, including multiple Toll-like receptors (TLRs) and the inflammasome component NLRP3, are elevated in diseased muscle compared with age-matched controls expressing Lama2. MyoD-hBcl-2 inhibits induction of TLR4, TLR6, TLR7, TLR8 and TLR9 in Lama2-deficient muscle compared with non-transgenic controls, and leads to reduced infiltration of eosinophils, which are key death effector cells. This congenital disease model provides a new paradigm for investigating cell death mechanisms during early stages of pathogenesis, demonstrating that interactions exist between Bcl-2, a multifunctional regulator of cell survival, and the innate immune response

    Lipidomic Analysis of Extracellular Vesicles from the Pathogenic Phase of Paracoccidioides brasiliensis

    Get PDF
    Background: Fungal extracellular vesicles are able to cross the cell wall and transport molecules that help in nutrient acquisition, cell defense, and modulation of the host defense machinery.Methodology/Principal Findings: Here we present a detailed lipidomic analysis of extracellular vesicles released by Paracoccidioides brasiliensis at the yeast pathogenic phase. We compared data of two representative isolates, Pb3 and Pb18, which have distinct virulence profiles and phylogenetic background. Vesicle lipids were fractionated into different classes and analyzed by either electrospray ionization- or gas chromatography-mass spectrometry. We found two species of monohexosylceramide and 33 phospholipid species, including phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Among the phospholipid-bound fatty acids in extracellular vesicles, C181 predominated in Pb3, whereas C18:2 prevailed in Pb18. the prevalent sterol in Pb3 and Pb18 vesicles was brassicasterol, followed by ergosterol and lanosterol. Inter-isolate differences in sterol composition were observed, and also between extracellular vesicles and whole cells.Conclusions/Significance: the extensive lipidomic analysis of extracellular vesicles from two P. brasiliensis isolates will help to understand the composition of these fungal components/organelles and will hopefully be useful to study their biogenesis and role in host-pathogen interactions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)National Institutes of Health (NIH)Universidade Federal de São Paulo, UNIFESP, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniv Texas El Paso, Dept Biol Sci, Border Biomed Res Ctr, El Paso, TX 79968 USAUniversidade Federal de São Paulo, UNIFESP, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilFAPESP: 06/05095-6FAPESP: 07/04757-8FAPESP: 07/59768-4CNPq: 301666/2010-5National Institutes of Health (NIH): 5G12RR008124-16A1National Institutes of Health (NIH): 5G12RR008124-16A1S1National Institutes of Health (NIH): G12MD007592Web of Scienc

    How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

    Full text link
    corecore