55 research outputs found

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Get PDF
    BACKGROUND: Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. RESULTS: We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. CONCLUSION: Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions

    RBF-TSS: Identification of Transcription Start Site in Human Using Radial Basis Functions Network and Oligonucleotide Positional Frequencies

    Get PDF
    Accurate identification of promoter regions and transcription start sites (TSS) in genomic DNA allows for a more complete understanding of the structure of genes and gene regulation within a given genome. Many recently published methods have achieved high identification accuracy of TSS. However, models providing more accurate modeling of promoters and TSS are needed. A novel identification method for identifying transcription start sites that improves the accuracy of TSS recognition for recently published methods is proposed. This method incorporates a metric feature based on oligonucleotide positional frequencies, taking into account the nature of promoters. A radial basis function neural network for identifying transcription start sites (RBF-TSS) is proposed and employed as a classification algorithm. Using non-overlapping chunks (windows) of size 50 and 500 on the human genome, the proposed method achieves an area under the Receiver Operator Characteristic curve (auROC) of 94.75% and 95.08% respectively, providing increased performance over existing TSS prediction methods

    Novel Exon of Mammalian ADAR2 Extends Open Reading Frame

    Get PDF
    Background: The post-transcriptional processing of pre-mRNAs by RNA editing contributes significantly to the complexity of the mammalian transcriptome. RNA editing by site-selective A-to-I modification also regulates protein function through recoding of genomically specified sequences. The adenosine deaminase ADAR2 is the main enzyme responsible for recoding editing and loss of ADAR2 function in mice leads to a phenotype of epilepsy and premature death. Although A-to-I RNA editing is known to be subject to developmental and cell-type specific regulation, there is little knowledge regarding the mechanisms that regulate RNA editing in vivo. Therefore, the characterization of ADAR expression and identification of alternative ADAR variants is an important prerequisite for understanding the mechanisms for regulation of RNA editing and the causes for deregulation in disease. Methodology/Principal Findings: Here we present evidence for a new ADAR2 splice variant that extends the open reading frame of ADAR2 by 49 amino acids through the utilization of an exon located 18 kilobases upstream of the previously annotated first coding exon and driven by a candidate alternative promoter. Interestingly, the 49 amino acid extension harbors a sequence motif that is closely related to the R-domain of ADAR3 where it has been shown to function as a basic, single-stranded RNA binding domain. Quantitative expression analysis shows that expression of the novel ADAR2 splice variant is tissue specific being highest in the cerebellum

    Putative cis-regulatory elements in genes highly expressed in rice sperm cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of <it>cis</it>-regulatory elements (CREs), which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression.</p> <p>Findings</p> <p>We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using <it>in silico </it>prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes.</p> <p>Conclusions</p> <p>Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell-specific gene expression.</p

    In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer

    Get PDF
    Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5′ CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49/79 primary prostate adenocarcinoma and 7/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5/37 benign prostatic hyperplasia (P<0.0001) and in 0/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score ⩾7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease

    Two cold inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens

    Full text link
    The barley genesHvLtp4.2 andHvLtp4.3 both encode the lipid transfer protein LTP4 and are less than 1 kb apart in tail-to-tail orientation. They differ in their non-coding regions from each other and from the gene corresponding to a previously reportedLtp4 cDNA (nowLtp4.1). Southern blot analysis indicated the existence of three or moreLtp4 genes per haploid genome and showed considerable polymorphism among barley cultivars. We have investigated the transient expression of genesHvLtp4.2 andHvLtp4.3 following transformation by particle bombardment, using promoter fusions to the-glucuronidase reporter sequence. In leaves, activities of the two promoters were of the same order as those of the sucrose synthase (Ss1) and cauliflower mosaic virus 35S promoters used as controls. Their expression patterns were similar, except thatLtp4.2 was more active thanLtp4.3 in endosperm, andLtp4.3 was active in roots, whileLtp4.2 was not. The promoters of both genes were induced by low temperature, both in winter and spring barley cultivars. Northern blot analysis, using theLtp4-specific probe, indicated thatXanthomonas campestris pv.translucens induced an increase over basal levels ofLtp4 mRNA, whilePseudomonas syringae pv.japonica caused a decrease. TheLtp4.3-Gus promoter fusion also responded in opposite ways to these two compatible bacterial pathogens, whereas theLtp4.2-Gus construction did not respond to infectio

    VILIP-1 Downregulation in Non-Small Cell Lung Carcinomas: Mechanisms and Prediction of Survival

    Get PDF
    VILIP-1, a member of the neuronal Ca++ sensor protein family, acts as a tumor suppressor gene in an experimental animal model by inhibiting cell proliferation, adhesion and invasiveness of squamous cell carcinoma cells. Western Blot analysis of human tumor cells showed that VILIP-1 expression was undetectable in several types of human tumor cells, including 11 out of 12 non-small cell lung carcinoma (NSCLC) cell lines. The down-regulation of VILIP-1 was due to loss of VILIP-1 mRNA transcripts. Rearrangements, large gene deletions or mutations were not found. Hypermethylation of the VILIP-1 promoter played an important role in gene silencing. In most VILIP-1-silent cells the VILIP-1 promoter was methylated. In vitro methylation of the VILIP-1 promoter reduced its activity in a promoter-reporter assay. Transcriptional activity of endogenous VILIP-1 promoter was recovered by treatment with 5′-aza-2′-deoxycytidine (5′-Aza-dC). Trichostatin A (TSA), a histone deacetylase inhibitor, potently induced VILIP-1 expression, indicating that histone deacetylation is an additional mechanism of VILIP-1 silencing. TSA increased histone H3 and H4 acetylation in the region of the VILIP-1 promoter. Furthermore, statistical analysis of expression and promoter methylation (n = 150 primary NSCLC samples) showed a significant relationship between promoter methylation and protein expression downregulation as well as between survival and decreased or absent VILIP-1 expression in lung cancer tissues (p<0.0001). VILIP-1 expression is silenced by promoter hypermethylation and histone deacetylation in aggressive NSCLC cell lines and primary tumors and its clinical evaluation could have a role as a predictor of short-term survival in lung cancer patients

    Both SEPT2 and MLL are down-regulated in MLL-SEPT2 therapy-related myeloid neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A relevant role of septins in leukemogenesis has been uncovered by their involvement as fusion partners in <it>MLL</it>-related leukemia. Recently, we have established the <it>MLL-SEPT2 </it>gene fusion as the molecular abnormality subjacent to the translocation t(2;11)(q37;q23) in therapy-related acute myeloid leukemia. In this work we quantified <it>MLL </it>and <it>SEPT2 </it>gene expression in 58 acute myeloid leukemia patients selected to represent the major AML genetic subgroups, as well as in all three cases of <it>MLL-SEPT2</it>-associated myeloid neoplasms so far described in the literature.</p> <p>Methods</p> <p>Cytogenetics, fluorescence in situ hybridization (FISH) and molecular studies (RT-PCR, qRT-PCR and qMSP) were used to characterize 58 acute myeloid leukemia patients (AML) at diagnosis selected to represent the major AML genetic subgroups: <it>CBFB-MYH11 </it>(n = 13), <it>PML-RARA </it>(n = 12); <it>RUNX1-RUNX1T1 </it>(n = 12), normal karyotype (n = 11), and <it>MLL </it>gene fusions other than <it>MLL-SEPT2 </it>(n = 10). We also studied all three <it>MLL-SEPT2 </it>myeloid neoplasia cases reported in the literature, namely two AML patients and a t-MDS patient.</p> <p>Results</p> <p>When compared with normal controls, we found a 12.8-fold reduction of wild-type <it>SEPT2 </it>and <it>MLL-SEPT2 </it>combined expression in cases with the <it>MLL-SEPT2 </it>gene fusion (p = 0.007), which is accompanied by a 12.4-fold down-regulation of wild-type <it>MLL </it>and <it>MLL-SEPT2 </it>combined expression (p = 0.028). The down-regulation of <it>SEPT2 </it>in <it>MLL-SEPT2 </it>myeloid neoplasias was statistically significant when compared with all other leukemia genetic subgroups (including those with other <it>MLL </it>gene fusions). In addition, <it>MLL </it>expression was also down-regulated in the group of <it>MLL </it>fusions other than <it>MLL-SEPT2</it>, when compared with the normal control group (p = 0.023)</p> <p>Conclusion</p> <p>We found a significant down-regulation of both <it>SEPT2 </it>and <it>MLL </it>in <it>MLL-SEPT2 </it>myeloid neoplasias. In addition, we also found that <it>MLL </it>is under-expressed in AML patients with <it>MLL </it>fusions other than <it>MLL-SEPT2</it>.</p
    corecore