78 research outputs found

    Impact of Darker, Intermediate and Lighter Phenotypes of Body Melanization on Desiccation Resistance in Drosophila melanogaster

    Get PDF
    A possible link between melanization and desiccation resistance can be inferred if within population differences in melanization find significant correlations with desiccation resistance and its mechanistic basis i.e. rate of water loss/hr. Accordingly, darker, intermediate and lighter phenotypes of body melanization were analyzed in wild and laboratory reared Drosophila melanogaster L. (Diptera: Clyclorrapha) populations from highland and lowland sites located in close proximity at five different latitudinal locations (11.15 °N to 31.06°N) within the Indian subcontinent. In large population samples, occurrence of significant within population variability made it possible to assort non-overlapping phenotypes of body coloration (i.e. lighter (< 25%), intermediate (30 to 40%) and darker (> 45%)) for all the populations which were further investigated for desiccation resistance and rate of water loss/hr. Significantly, higher desiccation resistance but much reduced rate of water loss/hr were observed in darker and intermediate phenotypes in all the populations. By contrast, lighter phenotypes exhibited lower desiccation tolerance but higher rate of water loss/hr. A regression analysis between traits provided similar slope values for wild and laboratory populations. For all three physiological traits, predicted trait values from multiple regression analysis as a simultaneous function of annual average temperature and relative humidity, matched the observed values. We infer that parallel changes in melanization and desiccation resistance may result from decreasing annual average temperature and relative humidity along increasing latitude as well as altitude on the Indian subcontinent

    Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?

    Get PDF
    The laboratory mouse has been widely used to test the efficacy of schistosome vaccines and a long list of candidates has emerged from this work, many of them abundant internal proteins. These antigens do not have an additive effect when co-administered, or delivered as SWAP homogenate, a quarter of which comprises multiple candidates; the observed protection has an apparent ceiling of 40–50 %. We contend that the low level of maturation of penetrating cercariae (~32 % for Schistosoma mansoni) is a major limitation of the model since 68/100 parasites fail to mature in naïve mice due to natural causes. The pulmonary capillary bed is the obstacle encountered by schistosomula en route to the portal system. The fragility of pulmonary capillaries and their susceptibility to a cytokine-induced vascular leak syndrome have been documented. During lung transit schistosomula burst into the alveolar spaces, and possess only a limited capacity to re-enter tissues. The acquired immunity elicited by the radiation attenuated (RA) cercarial vaccine relies on a pulmonary inflammatory response, involving cytokines such as IFNγ and TNFα, to deflect additional parasites into the alveoli. A principal difference between antigen vaccine protocols and the RA vaccine is the short interval between the last antigen boost and cercarial challenge of mice (often two weeks). Thus, after antigen vaccination, challenge parasites will reach the lungs when both activated T cells and cytokine levels are maximal in the circulation. We propose that “protection” in this situation is the result of physiological effects on the pulmonary blood vessels, increasing the proportion of parasites that enter the alveoli. This hypothesis will explain why internal antigens, which are unlikely to interact with the immune response in a living schistosomulum, plus a variety of heterologous proteins, can reduce the level of maturation in a non-antigen-specific way. These proteins are “successful” precisely because they have not been selected for immunological silence. The same arguments apply to vaccine experiments with S. japonicum in the mouse model; this schistosome species seems a more robust parasite, even harder to eliminate by acquired immune responses. We propose a number of ways in which our conclusions may be tested

    The First Human Epitope Map of the Alphaviral E1 and E2 Proteins Reveals a New E2 Epitope with Significant Virus Neutralizing Activity

    Get PDF
    Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119

    Melanism in Peromyscus Is Caused by Independent Mutations in Agouti

    Get PDF
    Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist, the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than previously thought

    Neuroanatomical Study of the A11 Diencephalospinal Pathway in the Non-Human Primate

    Get PDF
    BACKGROUND: The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. METHODS AND FINDINGS: In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. CONCLUSION: The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells
    • …
    corecore