53 research outputs found

    Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years

    Full text link
    [EN] Research collaboration is necessary, rewarding, and beneficial. Cohesion between team members is related to their collective efficiency. To assess collaboration processes and their eventual outcomes, agencies need innovative methods-and social network approaches are emerging as a useful analytical tool. We identified the research output and citation data of a network of 61 research groups formally engaged in publishing rare disease research between 2000 and 2013. We drew the collaboration networks for each year and computed the global and local measures throughout the period. Although global network measures remained steady over the whole period, the local and subgroup metrics revealed a growing cohesion between the teams. Transitivity and density showed little or no variation throughout the period. In contrast the following points indicated an evolution towards greater network cohesion: the emergence of a giant component (which grew from just 30 % to reach 85 % of groups); the decreasing number of communities (following a tripling in the average number of members); the growing number of fully connected subgroups; and increasing average strength. Moreover, assortativity measures reveal that, after an initial period where subject affinity and a common geographical location played some role in favouring the connection between groups, the collaboration was driven in the final stages by other factors and complementarities. The Spanish research network on rare diseases has evolved towards a growing cohesion-as revealed by local and subgroup metrics following social network analysis.The Spanish Ministry of Economics and Competitiveness partially supported this research (Grant Number ECO2014-59381-R).Benito Amat, C.; Perruchas, F. (2016). Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years. Scientometrics. 108(1):41-56. https://doi.org/10.1007/s11192-016-1952-zS41561081Aymé, S., & Schmidtke, J. (2007). Networking for rare diseases: A necessity for Europe. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 50(12), 1477–1483. doi: 10.1007/s00103-007-0381-9 .Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614. doi: 10.1016/S0378-4371(02)00736-7 .Bettencourt, L. M. A., Kaiser, D. I., & Kaur, J. (2009). Scientific discovery and topological transitions in collaboration networks. Journal of Informetrics, 3(3), 210–221. doi: 10.1016/j.joi.2009.03.001 .Bian, J., Xie, M., Topaloglu, U., Hudson, T., Eswaran, H., & Hogan, W. (2014). Social network analysis of biomedical research collaboration networks in a CTSA institution. Journal of Biomedical Informatics, 52, 130–140. doi: 10.1016/j.jbi.2014.01.015 .Bordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135–144. doi: 10.1016/j.joi.2014.12.001 .Börner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity, 10(4), 57–67. doi: 10.1002/cplx.20078 .Casey-Campbell, M., & Martens, M. L. (2009). Sticking it all together: A critical assessment of the group cohesion–performance literature. International Journal of Management Reviews, 11(2), 223–246. doi: 10.1111/j.1468-2370.2008.00239.x .Chiocchio, F., & Essiembre, H. (2009). Cohesion and performance: A meta-analytic review of disparities between project teams, Production teams, and service teams. Small group research, 40(4), 382–420. doi: 10.1177/1046496409335103 .Cho, A. (2011). Particle physicists’ new extreme teams. Science, 333(6049), 1564–1567. doi: 10.1126/science.333.6049.1564 .Cooke, N. J., & Hilton, M. L. (2015). Enhancing the effectiveness of team science. Washington, D.C.: National Academies Press. Recuperado a partir de http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science .Cugmas, M., Ferligoj, A., & Kronegger, L. (2015). The stability of co-authorship structures. Scientometrics, 106(1), 163–186. doi: 10.1007/s11192-015-1790-4 .Estrada, E. (2011). The structure of complex networks: Theory and applications. Oxford: University Press.Gallivan, M., & Ahuja, M. (2015). Co-authorship, homophily, and scholarly influence in information systems research. Journal of the Association for Information Systems, 16(12), 980.Ghosh, J., Kshitij, A., & Kadyan, S. (2014). Functional information characteristics of large-scale research collaboration: Network measures and implications. Scientometrics, 102(2), 1207–1239. doi: 10.1007/s11192-014-1475-4 .Heymann, S. (2014). Gephi. In R. Alhajj & J. Rokne (Eds.), Encyclopedia of social network analysis and mining (pp. 612–625). New York: Springer.Himmelstein, D. S., & Powell, K. (2016). Analysis for “the history of publishing delays” blog post v1.0. Zenodo,. doi: 10.5281/zenodo.45516 .Hunt, J. D., Whipple, E. C., & McGowan, J. J. (2012). Use of social network analysis tools to validate a resources infrastructure for interinstitutional translational research: A case study. Journal of the Medical Library Association, 100(1), 48–54. doi: 10.3163/1536-5050.100.1.009 .Kolaczyk, E. D., & Csardi, G. (2014). Statistical analysis of network data with R (Vol. 65). New York: Springer.Kumar, S. (2015). Efficacy of a giant component in co-authorship networks: Evidence from a Southeast Asian dataset in economics. Aslib Journal of Information Management, 68(1), 19–32. doi: 10.1108/AJIM-12-2014-0172 .Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323–1332. doi: 10.1002/asi.23266 .Laudel, G. (2002). What do we measure by co-authorships? Research Evaluation, 11(1), 3–15. doi: 10.3152/147154402781776961 .Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480. doi: 10.1016/j.ipm.2005.03.012 .Liu, P., & Xia, H. (2015). Structure and evolution of co-authorship network in an interdisciplinary research field. Scientometrics, 103(1), 101–134. doi: 10.1007/s11192-014-1525-y .Ministerio de Sanidad y Consumo. Resolución de 30 de marzo de. (2006) del Instituto de Salud Carlos III, por la que se convocan ayudas destinadas a financiar estructuras estables de investigación cooperativa, en el área de biomedicina y ciencias de la salud, en el marco de la iniciativa Ingenio 2010, programa Consolider, acciones CIBER, 83 Boletín Oficial del Estado (pp. 13770–13777).Newman, M. E. J. (2001a). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132. doi: 10.1103/PhysRevE.64.016132 .Newman, M. E. J. (2001b). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131. doi: 10.1103/PhysRevE.64.016131 .Newman, M. E. J. (2003a). Mixing patterns in networks. Physical Review E, 67(2), 026126. doi: 10.1103/PhysRevE.67.026126 .Newman, M. E. J. (2003b). The structure and function of complex networks. SIAM Review, 45, 167–256.OECD. (2010). Measuring innovation: A new perspective. Paris: OCDE Publishing.Ramasco, J., & Morris, S. (2006). Social inertia in collaboration networks. Physical Review E, 73(1), 016122. doi: 10.1103/PhysRevE.73.016122 .Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41(1), 643–681. doi: 10.1002/aris.2007.1440410121 .Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039. doi: 10.1126/science.1136099

    Comparison of clinical knowledge management capabilities of commercially-available and leading internally-developed electronic health records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have carried out an extensive qualitative research program focused on the barriers and facilitators to successful adoption and use of various features of advanced, state-of-the-art electronic health records (EHRs) within large, academic, teaching facilities with long-standing EHR research and development programs. We have recently begun investigating smaller, community hospitals and out-patient clinics that rely on commercially-available EHRs. We sought to assess whether the current generation of commercially-available EHRs are capable of providing the clinical knowledge management features, functions, tools, and techniques required to deliver and maintain the clinical decision support (CDS) interventions required to support the recently defined "meaningful use" criteria.</p> <p>Methods</p> <p>We developed and fielded a 17-question survey to representatives from nine commercially available EHR vendors and four leading internally developed EHRs. The first part of the survey asked basic questions about the vendor's EHR. The second part asked specifically about the CDS-related system tools and capabilities that each vendor provides. The final section asked about clinical content.</p> <p>Results</p> <p>All of the vendors and institutions have multiple modules capable of providing clinical decision support interventions to clinicians. The majority of the systems were capable of performing almost all of the key knowledge management functions we identified.</p> <p>Conclusion</p> <p>If these well-designed commercially-available systems are coupled with the other key socio-technical concepts required for safe and effective EHR implementation and use, and organizations have access to implementable clinical knowledge, we expect that the transformation of the healthcare enterprise that so many have predicted, is achievable using commercially-available, state-of-the-art EHRs.</p

    Gender Nonconformity During Adolescence:Links with Stigma, Sexual Minority Status, and Psychosocial Outcomes

    Get PDF
    Both gender nonconformity and sexual minority status during adolescence are associated with elevated levels of victimization and harassment, experiences that have serious consequences for adolescent psychosocial outcomes. While gender nonconformity and sexual minority status reflect separate constructs, they are associated because (1) sexual minority youth report higher levels of gender nonconformity and (2) gender nonconformity is frequently used to attribute sexual minority status by others. Following from classic stigma theory, the current chapter focuses on the role of gender nonconformity in explaining variation in social exclusion and victimization among both sexual minority and sexual majority youth. Of particular interest is the potential for gender nonconformity to mediate or moderate the association between sexual minority status and individual mental health and wellbeing outcomes. Gender differences will also be discussed, focusing on differences between girls and boys in the links between sexual minority status, gender nonconformity, experiences of victimization, and negative psychosocial outcomes. Additionally, the emerging literature on conceptualizing gender nonconformity among trans and non-binary youth will be addressed. Finally, the current chapter will finish with a discussion of how and why gender nonconformity must be taken into consideration in the development of programs aimed at reducing homophobia among adolescent populations

    iCTNet2: integrating heterogeneous biological interactions to understand complex traits.

    No full text
    iCTNet (integrated Complex Traits Networks) version 2 is a Cytoscape app and database that allows researchers to build heterogeneous networks by integrating a variety of biological interactions, thus offering a systems-level view of human complex traits.
    • …
    corecore