34 research outputs found

    Reward processing in autism: a thematic series

    Get PDF
    This thematic series presents theoretical and empirical papers focused on understanding autism from the perspective of reward processing deficits. Although the core symptoms of autism have not traditionally been conceptualized with respect to altered reward-based processes, it is clear that brain reward circuitry plays a critical role in guiding social and nonsocial learning and behavior throughout development. Additionally, brain reward circuitry may respond to social sources of information in ways that are similar to responses to primary rewards, and recent clinical data consistently suggest abnormal behavioral and neurobiologic responses to rewards in autism. This thematic series presents empirical data and review papers that highlight the utility of considering autism from the perspective of reward processing deficits. Our hope is that this novel framework may further elucidate autism pathophysiology, with the ultimate goal of yielding novel insights with potential therapeutic implications

    Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers

    Get PDF
    Although the majority of our social interactions are with people we know, few studies have investigated the neural correlates of sharing valuable resources with familiar others. Using an ecologically valid research paradigm, this functional magnetic resonance imaging study examined the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults. Participants (N = 27) distributed coins between themselves and another person, where they could make selfish choices that maximized their own gains or prosocial choices that maximized outcomes of the other. Participants were more prosocial toward friends and more selfish toward disliked peers. Individual prosociality levels toward friends were associated negatively with supplementary motor area and anterior insula activity. Further preliminary analyses showed that prosocial decisions involving friends were associated with heightened activity in the bilateral posterior temporoparietal junction, and selfish decisions involving disliked peers were associated with heightened superior temporal sulcus activity, which are brain regions consistently shown to be involved in mentalizing and perspective taking in prior studies. Further, activation of the putamen was observed during prosocial choices involving friends and selfish choices involving disliked peers. These findings provide insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner

    The Drosophila neural lineages: a model system to study brain development and circuitry

    Get PDF
    In Drosophila, neurons of the central nervous system are grouped into units called lineages. Each lineage contains cells derived from a single neuroblast. Due to its clonal nature, the Drosophila brain is a valuable model system to study neuron development and circuit formation. To better understand the mechanisms underlying brain development, genetic manipulation tools can be utilized within lineages to visualize, knock down, or over-express proteins. Here, we will introduce the formation and development of lineages, discuss how one can utilize this model system, offer a comprehensive list of known lineages and their respective markers, and then briefly review studies that have utilized Drosophila neural lineages with a look at how this model system can benefit future endeavors

    Medial prefrontal cortical thinning mediates shifts in other-regarding preferences during adolescence

    Get PDF
    Adolescence is a time of significant cortical changes in the ‘social brain’, a set of brain regions involved in sophisticated social inference. However, there is limited evidence linking the structural changes in social brain to development of social behavior. The present study investigated how cortical development of the social brain relates to other-regarding behavior, in the context of fairness concerns. Participants aged between 9 to 23 years old responded to multiple rounds of ultimatum game proposals. The degree to which each participant considers fairness of intention (i.e., intention-based reciprocity) vs. outcome (i.e., egalitarianism) was quantified using economic utility models. We observed a gradual shift in other-regarding preferences from simple rule-based egalitarianism to complex intention-based reciprocity from early childhood to young adulthood. The preference shift was associated with cortical thinning of the dorsomedial prefrontal cortex and posterior temporal cortex. Meta-analytic reverse-inference analysis showed that these regions were involved in social inference. Importantly, the other-regarding preference shift was statistically mediated by cortical thinning in the dorsomedial prefrontal cortex. Together these findings suggest that development of the ability to perform sophisticated other-regarding social inference is associated with the structural changes of specific social brain regions in late adolescence
    corecore