103 research outputs found
Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma
Currently, considerable resurgent interest exists in the concept of
superradiance (SR), i.e., accelerated relaxation of excited dipoles due to
cooperative spontaneous emission, first proposed by Dicke in 1954. Recent
authors have discussed SR in diverse contexts, including cavity quantum
electrodynamics, quantum phase transitions, and plasmonics. At the heart of
these various experiments lies the coherent coupling of constituent particles
to each other via their radiation field that cooperatively governs the dynamics
of the whole system. In the most exciting form of SR, called superfluorescence
(SF), macroscopic coherence spontaneously builds up out of an initially
incoherent ensemble of excited dipoles and then decays abruptly. Here, we
demonstrate the emergence of this photon-mediated, cooperative, many-body state
in a very unlikely system: an ultradense electron-hole plasma in a
semiconductor. We observe intense, delayed pulses, or bursts, of coherent
radiation from highly photo-excited semiconductor quantum wells with a
concomitant sudden decrease in population from total inversion to zero. Unlike
previously reported SF in atomic and molecular systems that occur on nanosecond
time scales, these intense SF bursts have picosecond pulse-widths and are
delayed in time by tens of picoseconds with respect to the excitation pulse.
They appear only at sufficiently high excitation powers and magnetic fields and
sufficiently low temperatures - where various interactions causing decoherence
are suppressed. We present theoretical simulations based on the relaxation and
recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing
magnetic field, which successfully capture the salient features of the
experimental observations.Comment: 21 pages, 4 figure
Cardiac oxygen supply is compromised during the night in hypertensive patients
The enhanced heart rate and blood pressure soon after awaking increases cardiac oxygen demand, and has been associated with the high incidence of acute myocardial infarction in the morning. The behavior of cardiac oxygen supply is unknown. We hypothesized that oxygen supply decreases in the morning and to that purpose investigated cardiac oxygen demand and oxygen supply at night and after awaking. We compared hypertensive to normotensive subjects and furthermore assessed whether pressures measured non-invasively and intra-arterially give similar results. Aortic pressure was reconstructed from 24-h intra-brachial and simultaneously obtained non-invasive finger pressure in 14 hypertensives and 8 normotensives. Supply was assessed by Diastolic Time Fraction (DTF, ratio of diastolic and heart period), demand by Rate-Pressure Product (RPP, systolic pressure times heart rate, HR) and supply/demand ratio by Adia/Asys, with Adia and Asys diastolic and systolic areas under the aortic pressure curve. Hypertensives had lower supply by DTF and higher demand by RPP than normotensives during the night. DTF decreased and RPP increased in both groups after awaking. The DTF of hypertensives decreased less becoming similar to the DTF of normotensives in the morning; the RPP remained higher. Adia/Asys followed the pattern of DTF. Findings from invasively and non-invasively determined pressure were similar. The cardiac oxygen supply/demand ratio in hypertensive patients is lower than in normotensives at night. With a smaller night-day differences, the hypertensives’ risk for cardiovascular events may be more evenly spread over the 24 h. This information can be obtained noninvasively
Broadband THz absorption spectrometer based on excitonic nonlinear optical effects
A broadly tunable THz source is realized via difference frequency generation, in which an enhancement to χ (3) that is obtained via resonant excitation of III–V semiconductor quantum well excitons is utilized. The symmetry of the quantum wells (QWs) is broken by utilizing the built-in electric-field across a p–i–n junction to produce effective χ (2) processes, which are derived from the high χ (3) . This χ (2) media exhibits an onset of nonlinear processes at ~4 W cm −2 , thereby enabling area (and, hence, power) scaling of the THz emitter. Phase matching is realized laterally through normal incidence excitation. Using two collimated 130 mW continuous wave (CW) semiconductor lasers with ~1-mm beam diameters, we realize monochromatic THz emission that is tunable from 0.75 to 3 THz and demonstrate the possibility that this may span 0.2–6 THz with linewidths of ~20 GHz and efficiencies of ~1 × 10 –5 , thereby realizing ~800 nW of THz power. Then, transmission spectroscopy of atmospheric features is demonstrated, thereby opening the way for compact, low-cost, swept-wavelength THz spectroscopy
Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2 (X = S, Se, Te) chalcopyrite-structure compounds
The electronic structure, linear and nonlinear optical properties have been
calculated for CuInX2 (X=S, Se, Te) chalcopyrite-structure single crystals
using the state-of-the-art full potential linear augmented plane wave (FP-LAPW)
method. We present results for band structure, density of states, and imaginary
part of the frequency-dependent linear and nonlinear optical susceptibilities.
We find that these crystals are semiconductors with direct band gaps. We have
calculated the birefringence of these crystals. The birefringence is negative
for CuInS2 and CuInSe2 while it is positive for CuInTe2 in agreement with the
experimental data. Calculations are reported for the frequency-dependent
complex second-order non-linear optical susceptibilities . The intra-band and
inter-band contributions to the second harmonic generation increase when we
replace S by Se and decrease when we replace Se by Te. We find that smaller
energy band gap compounds have larger values of in agreement with the
experimental data and previous theoretical calculations.Comment: 17 pages, 6 figure
Altered Arterial Stiffness and Subendocardial Viability Ratio in Young Healthy Light Smokers after Acute Exercise
Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress) has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals.Healthy light smokers (n = 24, pack-years = 2.9) and non-smokers (n = 53) underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1) after 12h abstinence from smoking (chronic condition) and 2) immediately after smoking one cigarette (acute condition). At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions.Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired 'vascular reserve' or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals appears to have harmful effects on vascular function, affecting the ability of the vascular bed to respond to increased demands
A comparison of echocardiography to invasive measurement in the evaluation of pulmonary arterial hypertension in a rat model
Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by progressive elevation in pulmonary artery pressure (PAP) and total pulmonary vascular resistance (TPVR). Recent advances in imaging techniques have allowed the development of new echocardiographic parameters to evaluate disease progression. However, there are no reports comparing the diagnostic performance of these non-invasive parameters to each other and to invasive measurements. Therefore, we investigated the diagnostic yield of echocardiographically derived TPVR and Doppler parameters of PAP in screening and measuring the severity of PAH in a rat model. Serial echocardiographic and invasive measurements were performed at baseline, 21 and 35 days after monocrotaline-induction of PAH. The most challenging echocardiographic derived TPVR measurement had good correlation with the invasive measurement (r = 0.92, P < 0.001) but also more simple and novel parameters of TPVR were found to be useful although the non-invasive TPVR measurement was feasible in only 29% of the studies due to lack of sufficient tricuspid valve regurgitation. However, echocardiographic measures of PAP, pulmonary artery flow acceleration time (PAAT) and deceleration (PAD), were measurable in all animals, and correlated with invasive PAP (r = −0.74 and r = 0.75, P < 0.001 for both). Right ventricular thickness and area correlated with invasive PAP (r = 0.59 and r = 0.64, P < 0.001 for both). Observer variability of the invasive and non-invasive parameters was low except in tissue-Doppler derived isovolumetric relaxation time. These non-invasive parameters may be used to replace invasive measurements in detecting successful disease induction and to complement invasive data in the evaluation of PAH severity in a rat model
Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas
Many-body systems in nature exhibit complexity and self-organization arising from seemingly simple laws. The long-range Coulomb interaction between electrical charges generates a plethora of bound states in matter, ranging from the hydrogen atom to complex biochemical structures. Semiconductors form an ideal laboratory for studying many-body interactions of quasi-particles among themselves and with lattice vibrations and light. Oppositely charged electron and hole quasi-particles can coexist in an ionized but correlated plasma, or form bound hydrogen-like pairs called excitons which strongly affect physical properties. The pathways between such states however remain elusive in near-visible optical experiments that detect a subset of excitons with vanishing center-of-mass momenta. In contrast, transitions between internal exciton levels which occur in the far-infrared at terahertz (10 s) frequencies are in dependent of this restriction suggesting their use as a novel pro be of pair dynamics. Here, we employ an ultrafast terahertz probe to directly investigate the dynamical interplay of optically-generated excitons and unbound electron-hole pairs in GaAs quantum wells. Our observations witness an unexpected quasi-instantaneous excitonic enhancement, reveal formation of insulating excitons on a hundred picosecond timescale and manifest conditions under which excitonic populations prevail
Effects of Carrier Confinement and Intervalley Scattering on Photoexcited Electron Plasma in Silicon
Lightwave-driven quasiparticle collisions on a subcycle timescale
Ever since Ernest Rutherford scattered alpha-particles from gold foils(1), collision experiments have revealed insights into atoms, nuclei and elementary particles(2). In solids, many-body correlations lead to characteristic resonances(3)-called quasiparticles-such as excitons, dropletons(4), polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin-and charge-order, and high-temperature superconductivity(5). However, the extremely short lifetimes of these entities(6) make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport(7-24), the foundation of attosecond science(9-13), to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands(17-19) of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses
- …
