1,549 research outputs found

    Anomalous diffusion in polymers: long-time behaviour

    Full text link
    We study the Dirichlet boundary value problem for viscoelastic diffusion in polymers. We show that its weak solutions generate a dissipative semiflow. We construct the minimal trajectory attractor and the global attractor for this problem.Comment: 13 page

    Structural subnetwork evolution across the life-span: rich-club, feeder, seeder

    Full text link
    The impact of developmental and aging processes on brain connectivity and the connectome has been widely studied. Network theoretical measures and certain topological principles are computed from the entire brain, however there is a need to separate and understand the underlying subnetworks which contribute towards these observed holistic connectomic alterations. One organizational principle is the rich-club - a core subnetwork of brain regions that are strongly connected, forming a high-cost, high-capacity backbone that is critical for effective communication in the network. Investigations primarily focus on its alterations with disease and age. Here, we present a systematic analysis of not only the rich-club, but also other subnetworks derived from this backbone - namely feeder and seeder subnetworks. Our analysis is applied to structural connectomes in a normal cohort from a large, publicly available lifespan study. We demonstrate changes in rich-club membership with age alongside a shift in importance from 'peripheral' seeder to feeder subnetworks. Our results show a refinement within the rich-club structure (increase in transitivity and betweenness centrality), as well as increased efficiency in the feeder subnetwork and decreased measures of network integration and segregation in the seeder subnetwork. These results demonstrate the different developmental patterns when analyzing the connectome stratified according to its rich-club and the potential of utilizing this subnetwork analysis to reveal the evolution of brain architectural alterations across the life-span

    Most vital segment barriers

    Get PDF
    We study continuous analogues of "vitality" for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of "most vital arcs" for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases

    Rare B Decays with a HyperCP Particle of Spin One

    Full text link
    In light of recent experimental information from the CLEO, BaBar, KTeV, and Belle collaborations, we investigate some consequences of the possibility that a light spin-one particle is responsible for the three Sigma^+ -> p mu^+ mu^- events observed by the HyperCP experiment. In particular, allowing the new particle to have both vector and axial-vector couplings to ordinary fermions, we systematically study its contributions to various processes involving b-flavored mesons, including B-Bbar mixing as well as leptonic, inclusive, and exclusive B decays. Using the latest experimental data, we extract bounds on its couplings and subsequently estimate upper limits for the branching ratios of a number of B decays with the new particle. This can serve to guide experimental searches for the particle in order to help confirm or refute its existence.Comment: 17 pages, 3 figures; discussion on spin-0 case modified, few errors corrected, main conclusions unchange

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur

    Neural network generated parametrizations of deeply virtual Compton form factors

    Full text link
    We have generated a parametrization of the Compton form factor (CFF) H based on data from deeply virtual Compton scattering (DVCS) using neural networks. This approach offers an essentially model-independent fitting procedure, which provides realistic uncertainties. Furthermore, it facilitates propagation of uncertainties from experimental data to CFFs. We assumed dominance of the CFF H and used HERMES data on DVCS off unpolarized protons. We predict the beam charge-spin asymmetry for a proton at the kinematics of the COMPASS II experiment.Comment: 16 pages, 5 figure

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin

    Modelling avalanches in martensites

    Full text link
    Solids subject to continuous changes of temperature or mechanical load often exhibit discontinuous avalanche-like responses. For instance, avalanche dynamics have been observed during plastic deformation, fracture, domain switching in ferroic materials or martensitic transformations. The statistical analysis of avalanches reveals a very complex scenario with a distinctive lack of characteristic scales. Much effort has been devoted in the last decades to understand the origin and ubiquity of scale-free behaviour in solids and many other systems. This chapter reviews some efforts to understand the characteristics of avalanches in martensites through mathematical modelling.Comment: Chapter in the book "Avalanches in Functional Materials and Geophysics", edited by E. K. H. Salje, A. Saxena, and A. Planes. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-45612-6_

    Autosomal and Z-linked microsatellite markers enhanced for cross-species utility and assessed in a range of birds, including species of conservation concern

    Get PDF
    Microsatellite markers were designed to be of utility for genotyping multiple species of birds, including those of conservation concern, hence saving resources and enabling species/genome comparisons. We used the proven approach of Dawson et al. (Mol Ecol Resour 10:475–494, 2010) and assessed markers in multiple species, including nine species of conservation interest. We ensured both primer sequences matched multiple species (13 loci) or designed primer sets from expressed sequence tags (2 loci). Eleven primer sets were 100 % identical to the zebra finch (Taeniopygia guttata) and a second passerine species and/or the chicken (Gallus gallus). All 15 loci were polymorphic when assessed in a non-source species (Gouldian finch, Erythrura gouldiae) suggesting utility in multiple species. Four of the five Z-linked loci were assessed in at least nine additional species each (including ratites). All were variable in multiple species, demonstrating cross-species utility and potential for identifying Z chromosome rearrangements
    corecore