2,942 research outputs found
CORE and the Haldane Conjecture
The Contractor Renormalization group formalism (CORE) is a real-space
renormalization group method which is the Hamiltonian analogue of the Wilson
exact renormalization group equations. In an earlier paper\cite{QGAF} I showed
that the Contractor Renormalization group (CORE) method could be used to map a
theory of free quarks, and quarks interacting with gluons, into a generalized
frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to
study these theories. Since generalizations of HAF's exhibit all sorts of
subtle behavior which, from a continuum point of view, are related to
topological properties of the theory, it is important to know that CORE can be
used to extract this physics. In this paper I show that despite the folklore
which asserts that all real-space renormalization group schemes are necessarily
inaccurate, simple Contractor Renormalization group (CORE) computations can
give highly accurate results even if one only keeps a small number of states
per block and a few terms in the cluster expansion. In addition I argue that
even very simple CORE computations give a much better qualitative understanding
of the physics than naive renormalization group methods. In particular I show
that the simplest CORE computation yields a first principles understanding of
how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1
HAF.Comment: 36 pages, 4 figures, 5 tables, latex; extensive additions to conten
Dirac-Coulomb scattering with plane wave energy eigenspinors on de Sitter expanding universe
The lowest order contribution of the amplitude of Dirac-Coulomb scattering in
de Sitter spacetime is calculated assuming that the initial and final states of
the Dirac field are described by exact solutions of the free Dirac equation on
de Sitter spacetime with a given energy and helicity. We find that the total
energy is conserved in the scattering process.Comment: 9 pages, no figure
Status of Spin Physics - Experimental Summary
The current status of spin physics experiments, based on talks presented at
the Third Circum-Pan-Pacific Symposium on High Energy Spin Physics held in
Beijing, 2001, is summarized in this article. Highlights of recent experimental
results at SLAC, JLab, and DESY, as well as future plans at these facilities
and at RHIC-spin are discussed.Comment: 18 pages, 7 figures, Invited talk presented at the Third
Circum-Pan-Pacific Symposium on High Energy Spin Physics held in Beijing,
October, 200
Final state interaction corrections to inelastic nucleon-nucleon scattering
The final state interaction corrections to the peripheral model calculation of Drell and Hiida of the process n + n → n + n + π are calculated. Methods of calculation and comparison with experiment are discussed. © 1963
Probing New Physics From CP Violation in Radiative B Decays
When new CP-violating interactions are dominated by flavor changing neutral
particle exchanges, that may occur in many extensions of the standard model. We
examine a type 3 two Higgs doublet model and find that direct CP asymmetries
can be as large as about 25% . Time-dependent and time-integrated
mixing-induced CP asymmetries up to 85 and 40 %, respectively, are possible
without conflict with other constraints. It mainly requirs an enhanced
chromo-magnetic dipole decay to be close to the present experimental
bound.Comment: 7 pages, latex, no figure
Low mass lepton pair production in hadron collisions
The hadroproduction of lepton pairs with mass and transverse momentum
can be described in perturbative QCD by the same partonic subprocesses as
prompt photon production. We demonstrate that, like prompt photon production,
lepton pair production is dominated by quark-gluon scattering in the region
. This leads to sensitivity to the gluon density in kinematical
regimes that are accessible both at collider and fixed target experiments while
eliminating the theoretical and experimental uncertainties present in prompt
photon production.Comment: Talk given by M. Klasen at the International Conference on the
Structure and Interactions of the Photon, PHOTON 99, Freiburg i. Brsg.,
Germany, May 23-27, 1999. To be published in the proceedings. 6 pages, 6
postscript figure
Model independent properties of two-photon exchange in elastic electron proton scattering
We derive from first principles, as the C-invariance of the electromagnetic
interaction and the crossing symmetry, the general properties of two-photon
exchange in electron-proton elastic scattering. We show that the presence of
this mechanism destroys the linearity of the Rosenbluth separation.Comment: 12 pages, no figures- Corrected misprints, changes in P. 7. No
changes in conclusion
Is the ground state of Yang-Mills theory Coulombic?
We study trial states modelling the heavy quark-antiquark ground state in
SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a
thin string of glue is found to be a poor description of the continuum ground
state; the infinitesimal thickness of the string leads to UV artifacts which
suppress the overlap with the ground state. Contrastingly, a state which
surrounds the quarks with non-abelian Coulomb fields is found to have a good
overlap with the ground state for all charge separations. In fact, the overlap
increases as the lattice regulator is removed. This opens up the possibility
that the Coulomb state is the true ground state in the continuum limit.Comment: 10 pages, 9 .eps figure
Angular Conditions,Relations between Breit and Light-Front Frames, and Subleading Power Corrections
We analyze the current matrix elements in the general collinear (Breit)
frames and find the relation between the ordinary (or canonical) helicity
amplitudes and the light-front helicity amplitudes. Using the conservation of
angular momentum, we derive a general angular condition which should be
satisfied by the light-front helicity amplitudes for any spin system. In
addition, we obtain the light-front parity and time-reversal relations for the
light-front helicity amplitudes. Applying these relations to the spin-1 form
factor analysis, we note that the general angular condition relating the five
helicity amplitudes is reduced to the usual angular condition relating the four
helicity amplitudes due to the light-front time-reversal condition. We make
some comments on the consequences of the angular condition for the analysis of
the high- deuteron electromagnetic form factors, and we further apply the
general angular condition to the electromagnetic transition between spin-1/2
and spin-3/2 systems and find a relation useful for the analysis of the
N- transition form factors. We also discuss the scaling law and the
subleading power corrections in the Breit and light-front frames.Comment: 24 pages,2 figure
- …