476 research outputs found

    The Minimally Tuned Minimal Supersymmetric Standard Model

    Full text link
    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV.Comment: 38 pages, including 2 appendices, 8 figure

    Radiative Neutralino Decay in Supersymmetric Models

    Full text link
    The radiative decay Z2-> Z1 gamma proceeds at the one-loop level in the MSSM. It can be the dominant decay mode for the second lightest neutralino Z2 in certain regions of parameter space of supersymmetric models, where either a dynamical and/or kinematic enhancement of the branching fraction occurs. We perform an updated numerical study of this decay mode in both the minimal supergravity model (mSUGRA) and in the more general MSSM framework. In mSUGRA, the largest rates are found in the ``focus point'' region, where the mu parameter becomes small, and the lightest neutralinos become higgsino-like; in this case, radiative branching fraction can reach the 1% level. Our MSSM analysis includes a scan over independent positive and negative gaugino masses. We show branching fractions can reach the 10-100% level even for large values of the parameter tan(beta). These regions of parameter space are realized in supergravity models with non-universal gaugino masses. Measurement of the radiative neutralino branching fraction may help pin down underlying parameters of the fundamental supersymmetric model.Comment: 19 page JHEP file with 8 PS figures; previous version contained figure misplacemen

    Phenomenology of Mixed Modulus-Anomaly Mediation in Fluxed String Compactifications and Brane Models

    Full text link
    In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at MGUTM_{GUT} amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m3/2/MPl)α/2MGUT(m_{3/2}/M_{Pl})^{\alpha/2}M_{GUT} where α=m3/2/[M0ln(MPl/m3/2)]\alpha=m_{3/2}/[M_0\ln(M_{Pl}/m_{3/2})] for M0M_0 denoting the modulus-mediated contribution to the gaugino mass at MGUTM_{GUT}. The minimal KKLT set-up predicts α=1\alpha=1. As a consequence, for α=O(1)\alpha={\cal O}(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α=2\alpha= 2.Comment: 20 pages, 15 figures, some notations are changed, typos are corrected and discussions on the CP phase from μ\mu and B are adde

    Strong Constraints on the Parameter Space of the MSSM from Charge and Color Breaking Minima

    Get PDF
    A complete analysis of all the potentially dangerous directions in the field-space of the minimal supersymmetric standard model is carried out. They are of two types, the ones associated with the existence of charge and color breaking minima in the potential deeper than the realistic minimum and the directions in the field-space along which the potential becomes unbounded from below. The corresponding new constraints on the parameter space are given in an analytic form, representing a set of necessary and sufficient conditions to avoid dangerous directions. They are very strong and, in fact, there are extensive regions in the parameter space that become forbidden. This produces important bounds, not only on the value of AA, but also on the values of BB and M1/2M_{1/2}. Finally, the crucial issue of the one-loop corrections to the scalar potential has been taken into account in a proper way.Comment: 48 pages, LaTeX, 12 uuencoded postscript figures in additional file. Only a small comment about the m=0 (no-scale) limit has been included in sect.6 (Results) and sect.7 (Conclusions

    Suppressed supersymmetry breaking terms in the Higgs sector

    Full text link
    We study the little hierarchy between mass parameters in the Higgs sector and other SUSY breaking masses. This type of spectrum can relieve the fine-tuning problem in the MSSM Higgs sector. Our scenario can be realized by superconformal dynamics. The spectrum in our scenario has significant implications in other phenomenological aspects like the relic abundance of the lightest neutralino and relaxation of the unbounded-from-below constraints.Comment: 14 pages, late

    Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

    Full text link
    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of ~71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (m_LSP < 50 GeV) annihilating into tau-pairs and heavier LSPs annihilating into b-bbar. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.Comment: 24 pages, 9 figures, submitted to JCA

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde

    The MSSM fine tuning problem: a way out

    Full text link
    As is well known, electroweak breaking in the MSSM requires substantial fine-tuning, mainly due to the smallness of the tree-level Higgs quartic coupling, lambda_tree. Hence the fine tuning is efficiently reduced in supersymmetric models with larger lambda_tree, as happens naturally when the breaking of SUSY occurs at a low scale (not far from the TeV). We show, in general and with specific examples, that a dramatic improvement of the fine tuning (so that there is virtually no fine-tuning) is indeed a very common feature of these scenarios for wide ranges of tan(beta) and the Higgs mass (which can be as large as several hundred GeV if desired, but this is not necessary). The supersymmetric flavour problems are also drastically improved due to the absence of RG cross-talk between soft mass parameters.Comment: 28 pages, 9 PS figures, LaTeX Published versio

    Updated Constraints on the Minimal Supergravity Model

    Get PDF
    Recently, refinements have been made on both the theoretical and experimental determinations of the i.) mass of the lightest Higgs scalar (m_h), ii.) relic density of cold dark matter in the universe (Omega_CDM h^2), iii.) branching fraction for radiative B decay BF(b \to s \gamma), iv.) muon anomalous magnetic moment (a_\mu), and v.) flavor violating decay B_s \to \mu^+\mu^-. Each of these quantities can be predicted in the MSSM, and each depends in a non-trivial way on the spectra of SUSY particles. In this paper, we present updated constraints from each of these quantities on the minimal supergravity (mSUGRA) model as embedded in the computer program ISAJET. The combination of constraints points to certain favored regions of model parameter space where collider and non-accelerator SUSY searches may be more focussed.Comment: 20 pages, 6 figures. Version published in JHE
    corecore