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Abstract

A complete analysis of all the potentially dangerous directions in the �eld-space

of the minimal supersymmetric standard model is carried out. They are of two

types, the ones associated with the existence of charge and color breaking min-

ima in the potential deeper than the realistic minimum and the directions in

the �eld-space along which the potential becomes unbounded from below. The

corresponding new constraints on the parameter space are given in an analytic

form, representing a set of necessary and su�cient conditions to avoid dangerous

directions. They are very strong and, in fact, there are extensive regions in the

parameter space that become forbidden. This produces important bounds, not

only on the value of A, but also on the values of B and M1=2. Finally, the cru-

cial issue of the one-loop corrections to the scalar potential has been taken into

account in a proper way.
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1 Introduction

As is well known, the presence of scalar �elds with color and electric charge in su-

persymmetric (SUSY) theories induces the possible existence of dangerous charge and

color breaking (CCB) minima, which would make the standard vacuum unstable. This

is not necessarily a shortcoming since many SUSY models can be discarded on these

grounds, thus improving the predictive power of the theory.

This fact has been known since the early 80's [1, 2]. Since then, several interesting

papers have appeared in the subject [3, 4, 5, 6]. However, a complete study of this

crucial issue is still lacking. This is mainly due to two reasons. First, the enormous

complexity of the scalar potential, V , in a SUSY theory, which has motivated that

only analyses examining particular directions in the �eld{space have been performed.

Second, as we will see, the radiative corrections to V have not been normally included

in a proper way.

Concerning the �rst point, and to introduce some notation, let us write the tree-level

scalar potential, Vo, in the minimal supersymmetric standard model (MSSM):

Vo = VF + VD + Vsoft ; (1)

with

VF =
X
�

�����@W@��
�����
2

; (2a)

VD =
1

2

X
a

g2a

 X
�

�y�T
a��

!2

; (2b)

Vsoft =
X
�

m2
��
j��j

2 +
X

i�generations

fAui�uiQiH2ui +Adi�diQiH1di

+ Aei�eiLiH1ei + h:c:g+ (B�H1H2 + h:c:) ; (2c)

where W is the MSSM superpotential

W =
X

i�generations

f�uiQiH2ui + �diQiH1di + �eiLiH1eig+ �H1H2 ; (3)

�� runs over all the scalar components of the chiral super�elds and a; i are gauge

group and generation indices respectively. Qi (Li) are the scalar partners of the quark

(lepton) SU(2)L doublets and ui; di (ei) are the scalar partners of the quark (lepton)

SU(2)L singlets. In our notation Qi � (uL; dL)i, Li � (�L; eL)i, ui � uRi, di � dRi,

ei � eRi. Finally, H1;2 are the two SUSY Higgs doublets. The previous potential is

extremely involved since it has a large number of independent �elds. Furthermore,

even assuming universality of the soft breaking terms at the uni�cation scale, MX , it

contains a large number of independent parameters: m, M , A, B, �, i.e. the universal

scalar and gaugino masses, the universal coe�cients of the trilinear and bilinear scalar

terms, and the Higgs mixing mass, respectively. In addition, there are the gauge (g)

and Yukawa (�) couplings which are constrained by the experimental data. Notice that

M does not appear explicitely in Vo, but it does through the renormalization group

equations (RGEs) of all the remaining parameters.
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As mentioned above, the complexity of V has made that only particular directions

in the �eld-space have been explored. It will be useful for us to remind here two of them.

First, there is the \traditional" bound, �rst studied by Frere et al. and subsequently

by others [1, 2]. These authors considered just the three �elds present in a particular

trilinear scalar coupling, e.g. �uAuQuH2u, assuming equal vacuum expectation values

(VEVs) for them:

jQuj = jH2j = juj ; (4)

where only the uL-component of Qu takes a VEV in order to cancel the D{terms.

The phases of the three �elds are taken in such way that the trilinear scalar term in

the potential has negative sign. Then, they showed that a very deep CCB minimum

appears unless the famous constraint

jAuj
2
� 3

�
m2

Qu
+m2

u +m2
2

�
(5)

is satis�ed. In the previous equation m2
Qu
;m2

u;m
2
2 are the mass parameters of Qu, u,

H2. Notice from eq.(1) that m2
2 is the sum of the H2 squared soft mass, m2

H2

, plus

�2. Similar constraints for the other trilinear terms can straightforwardly be written.

These \traditional" bounds have extensively been used in the literature. The second

example is due to Komatsu [5], who realized that the potential of eq.(1) along the

direction

jLij
2 = jH2j

2 + jQjj
2

Qjdj = �
�

�dj
H2

jQjj
2 = jdj j

2 ; (6)

with Li and Qj VEVs taken along �L and dL respectively, is unbounded from below

(UFB) unless the constraint

m2
2 � �2 +m2

Li
� 0 (7)

is satis�ed. Komatsu claimed that for Mtop = 100 GeV this constraint is extremely

strong. To see this, notice that at the MZ scale m2
2 � �2 is normally negative and of

the same order as m2
Li
.

Let us go now to the issue of the radiative corrections. Usually, the scalar potential

is considered at tree-level, improved by one-loop RGEs, so that all the parameters

appearing in it (see eq.(1)) are running with the renormalization scale, Q. Then it is

demanded that the previous CCB constraints, i.e. eqs.(5), (7) and others, are satis�ed

at any scale between MX and MZ. However, as was clari�ed by Gamberini et al. [6],

this is not correct. Vo is strongly Q{dependent and the one-loop radiative corrections

to it, namely

�V1 =
X
�

n�

64�2
M4

�

"
log

M2
�

Q2
�

3

2

#
; (8)

are crucial to make the potential stable against variations of the Q scale. In eq.(8)

M2
�(Q) are the improved tree-level (�eld{dependent) squared mass eigenstates and

n� = (�1)2s�(2s� + 1), where s� is the spin of the corresponding particle. Clearly,

the complete one-loop potential V1 = Vo + �V1 has a structure that is even far more

involved than Vo (notice that �V1 is a complicated function of all the scalar �elds). This
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makes in practice the minimization of the complete V1 an impossible task. However, in

the region of Q where �V1 is small, the predictions of Vo and V1 essentially coincide.

This occurs for a value of Q of the order of the most signi�cant M� mass appearing

in (8), which in turn depends on what is the direction in the �eld-space that is being

analyzed. Moreover, this corresponds to the region of maximal Q{invariance of V1
[6, 7]. Therefore, one can still work just with Vo, but with the appropriate choice of Q.

In this way it was shown in ref.[6] that the apparently very strong constraint (7) was in

fact extremely weak. It should be mentioned however that the analysis was performed

assuming Mtop = MW . As we will see in sect.3 and sect.6, once the constraint (7) is

improved and the top quark mass is set at its current value, the corresponding bound

is really very restrictive.

To summarize the situation, due to the complexity of the SUSY scalar potential, only

particular directions in the �eld-space have been considered, thus obtaining necessary

but not su�cient conditions to avoid dangerous CCB minima. Furthermore, the usual

lack of an optimum scale to evaluate the constraints implies that their restrictive power

has been normally overestimated. E.g., eq.(5)-type constraints when (incorrectly) an-

alyzed at MX are very strong. The aim of this paper is to improve, and hopefully �x,

this situation.

In sect.2 we review the realistic minimum that corresponds to the standard vacuum. In

particular, we derive the correct scale at which the minimization of the potential has to

be evaluated and summarize all the theoretical and experimental constraints that the

realistic minimum must satisfy. In sect.3 we carry out a complete analysis of all the

potentially dangerous directions in the �eld-space along which the potential can be-

come unbounded from below, obtaining the corresponding constraints on the parameter

space. The possibility of spontaneous lepton number breaking is also discussed since

one of those directions involves the sneutrino. In sect.4 we perform a complete analysis

of all the constraints arising from the existence of charge and color breaking minima

in the potential deeper than the realistic minimum. Let us remark that the bounds

obtained in this section, as well as in sect.3, are completely general and are expressed

in an analytical way. Hence, they represent necessary and su�cient conditions on the

parameters of the MSSM, which can also be applied to the non-universal case. The

correct choice of the scale to evaluate the constraints is also discussed. The reader not

interested in the precise details of the calculation of the constraints may jump over the

two previous sections and go directly to sect.5, where we summarize all the previous

results. In sect.6 we analize numerically how the previously found constraints restrict

the whole parameter space of the MSSM. Although the \traditional" bounds evaluated

at the correct scale turn out to be very weak, we will show that the new charge and

color breaking constraints found here are much more important and, in fact, there are

extensive regions in the parameter space which are forbidden. The unbounded from

below-like constraints turn out to be even stronger. All together produces important

bounds not only on the value of A, but also on the values of B and M . The conclu-

sions are left for sect.7. Finally, the Appendix is devoted to the proof of some relevant

general properties concerning CCB minima which are used throughout the paper.
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2 The realistic minimum

The neutral part of the Higgs potential in the MSSM is

VHiggs = m2
1jH1j

2 +m2
2jH2j

2
� 2jm2

3jjH1jjH2j+
1

8
(g02 + g22)(jH2j

2
� jH1j

2)2

+ �V1 ; (9)

where m2
1 � m2

H1

+ �2, m2
2 � m2

H2

+ �2, m2
3 � ��B, g3 = g2 = g1 =

q
5
3
g0 at MX ,

and �V1 is given in eq.(8). It should develope a minimum at jH1j = v1, jH2j = v2,

such that v21 + v22 = 2M2
W =g

2
2. This is the realistic minimum that corresponds to the

standard vacuum. In this way the requirement of correct electroweak breaking �xes one

of the �ve independent parameters of the MSSM (i.e. m;M;A;B; �), say �. Actually,

for some choices of the four remaining parameters (m;M;A;B), there is no value of

� capable of producing the correct electroweak breaking. Therefore, this requirement

restricts the parameter space further, as is illustrated in Fig.1 (central darked region)

with a representative example. The value of the potential at the realistic minimum is

Vreal min = �
1

8
(g02 + g22) (v

2
2 � v21)

2 = �

n
[ (m2

1 +m2
2)
2
� 4jm3j

4 ]
1=2
�m2

1 +m2
2

o2
2 (g02 + g22)

:

(10)

Note that this is the result obtained by minimizing just the tree-level part of (9). As

explained in sect.1 this is correct if the minimization is performed at some sensible scale

around which VHiggs is Q-invariant. We have chosen for this the scale Q = MS , where

the predictions for v1;2 from VHiggs with and without radiative corrections coincide1.

More precisely, the requirement @�V1
@H2

���
Q=MS

= 0 gives

MS = e�1=2
Y
�

M

d�M
2

�P
�
d�M

2

�
� (11)

d� = n�
@M2

�

@H2

: (12)

Note that MS is a certain average of typical SUSY masses.

In all the previous calculation, one has to run the parameters through their re-

spective RGEs, which depend on the value of the gauge and Yukawa couplings. The

boundary conditions for these are determined by the experimental values of �1(MZ),

�2(MZ), �3(MZ) and the quark masses. In particular, we takeM
phys
top = 174 GeV as the

physical (pole) top mass, which is related to the running top mass through a standard

expression [8]. Actually, not for all the parameter space it is possible to choose the

boundary condition of �top so that the experimental mass is reproduced because the

RG infrared �xed point of �top puts an upper bound on Mtop, namely Mtop
<
� 197 sin �

GeV [9], where tan � = v2=v1. The corresponding restriction in the parameter space

is certainly substantial as is illustrated in Fig.1 (upper and lower darked regions). Let

us also mention that whenever tan � is not large (<� 10), it is a good approximation

1Strictly, this can only be demanded for one of the two Higgs VEVs, say v2, but then it also occurs

for v1 with high accuracy.
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to neglect the e�ect of the bottom and tau Yukawa couplings in the set of RGEs. We

have adopted this simpli�cation throughout the paper.

To be considered as realistic, the previous minimum has to satisfy a number of

further constraints. First of all, VHiggs should not be unbounded from below. Working

just with the tree-level part of (9), this leads to the well-known condition

m2
1 +m2

2 � 2jm2
3j : (13)

Actually, (13) is automatically satis�ed at Q = MS, but this is not necessarily true for

Q > MS . If it is not, then for large VEVs of the Higgs �elds (H1;2 � Q > MS), the

potential becomes much deeper than the realistic minimum. Hence, we must impose

(13) at any Q > MS and, in particular, at Q = MX . Very often the additional condition

m2
1m

2
2 � jm3j

4 < 0 ; (14)

is demanded at the MS scale to ensure that the H1 = H2 = 0 (non-electroweak-

breaking) point is unstable. However, it can be checked that (14) is automatically

satis�ed once a realistic minimum has been found.

Second, we must be sure that the realistic minimum of the (neutral) Higgs potential

is really a minimum in the whole �eld-space. This simply implies that all the scalar

squared mass eigenvalues (charged Higgses, squarks and sleptons) must be positive.

This is guaranteed for the charged Higgs �elds since in the MSSM the minimum of the

Higgs potential always lies at

H+
2 = H�

1 = 0 ; (15)

but not for the rest of the sparticles. Actually, we have veri�ed that the charged Higgs

�elds do not play any signi�cant role not only for the realistic minimum, but also for

any CCB direction. So, we have assumed (15) throughout the paper. Finally, we must

go further and demand that all the not yet observed particles, i.e. gluino (g), charginos

(��), neutralinos (�o), Higgses, squarks (q) and sleptons (l), have masses compatible

with the experimental bounds. Conservatively enough, we have imposed

Mg � 120 GeV ; M�� � 45 GeV

M�o � 18 GeV ; Mq � 100 GeV

Mt � 45 GeV ; Ml � 45 GeV ; (16)

in an obvious notation. The e�ect of strengthening these bounds can be trivially

incorporated to the results of the paper.

3 Improved UFB constraints

These constraints arise from directions in the �eld-space along which the (tree-level)

potential can become unbounded from below (UFB). It is interesting to note that

usually this is only true at tree-level since radiative corrections eventually raise the

potential for large enough values of the �elds. This is the case of UFB-2,3 directions

studied below. We have already mentioned the UFB direction of eq.(6) [5], and the

one in the Higgs part of the potential involving only the Higgs �elds (see eq.(13)).

However, as we are about to see, it is possible to do a complete clasi�cation of all

the potentially dangerous UFB directions and constraints in the MSSM. We will also

consider the radiative corrections in a proper way by making an suitable choice of the

renormalization scale (for more details see subsect.4.5).
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3.1 General properties

1 It is easy to check that trilinear scalar terms cannot play a signi�cant role along

an UFB direction since for large enough values of the �elds the corresponding

quartic (and positive) F{terms become unavoidably larger.

2 Since all the physical masses must be positive at Q = MS, the only negative

terms in the (tree-level) potential that can play a relevant role along an UFB

direction are2

m2
2jH2j

2 ; �2jm2
3jjH1jjH2j : (17)

Therefore, any UFB direction must involve, H2 and, perhaps, H1. Furthermore,

since the previous terms are cuadratic, all the quartic (positive) terms coming

from F{ and D{terms must be vanishing or kept under control along an UFB

direction. This means that, in any case, besides H2 some additional �eld(s) are

required.

3.2 UFB constraints

Using the previous general properties we can completely clasify the possible UFB di-

rections in the MSSM:

UFB-1

The �rst possibility is to play just with H1 and H2. Then, the relevant terms

of the potential are those written in eq.(9). Obviously, the only possible UFB

direction corresponds to choose H1 = H2 (up to O(mi) di�erences which are

negligible for large enough values of the �elds), so that the quartic D{term is

cancelled. Thus, the (tree-level) potential along the UFB-1 direction is

VUFB�1 = (m2
1 +m2

2 � 2jm2
3j)jH2j

2 : (18)

The constraint to be imposed is that, for any value of jH2j < MX ,

VUFB�1(Q = Q̂) > Vreal min(Q = MS) ; (19)

where Vreal min is the value of the realistic minimum, given by eq.(10), and VUFB�1
is evaluated at an appropriate scale Q̂. (Recall that since we are dealing with the

tree-level part of the Higgs potential, this has to be computed at a correct renor-

malization scale.) More precisely Q̂ must be of the same order as the most signif-

icant mass along this UFB-1 direction, which is Q̂ � Max(g2jH2j; �topjH2j; MS).

However, in this case, as already discussed in sect.2, eq.(19) is accurately equiv-

alent to the well-known condition

m2
1 +m2

2 � 2jm2
3j (20)

evaluated at any Q > MS and, in particular, at Q = MX . If this is not satis�ed

the potential eq.(18) is always deeper than the realistic minimum.

2The only possible exception are the stop soft mass terms m2
Qt
jQtj

2+m2
t jtj

2 since the stop masses

are given by � (m2
Qt;t

+M2
top � mixing), but this possibility is barely consistent with the present

bounds on squark masses.
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UFB-2

If we include some additional �eld (besides H2;H1), this can only be justi�ed in

order to cancel (or keep under control) the D{terms in a more e�cient way than

just with H1. It is easy to see by simple inspection that the best possible choice

is a slepton Li (along the �L direction), since it has the lightest mass without

contributing to further quartic terms in V . Consequently, the relevant potential

reads

V = m2
1jH1j

2+m2
2jH2j

2
�2jm2

3jjH1jjH2j+m
2
Li
jLij

2+
1

8
(g02+g22)(jH2j

2
�jH1j

2
�jLij

2)2:

(21)

It is now straightforward to write the deepest direction along the Li, H1 variables,

namely3

jLij
2 =

�4m2
Li

g02 + g22
+ jH2j

2
� jH1j

2 ; (22a)

jH1j = jH2j
jm2

3j

m2
1 �m2

Li

= jH2j
jm2

3j

�2
; (22b)

provided that

jm2
3j < �2 (23a)

jH2j
2 >

4m2
Li

(g02 + g22)
h
1� jm3j4

�4

i ; (23b)

otherwise the optimum value for Li is Li = 0, and we come back to the direction

UFB-1. From (21), (22a), (22b) we can write the (tree-level) potential along the

UFB-2 direction

VUFB�2 =

"
m2

2 +m2
Li
�
jm3j

4

�2

#
jH2j

2
�

2m4
Li

g02 + g22
: (24)

From (24) it might seem that the potential is unbounded from below unless

m2
2 +m2

Li
�
jm3j

4

�2
� 0 : (25)

However, what should be really veri�ed is that, for any value of jH2j < MX

satisfying (23b),

VUFB�2(Q = Q̂) > Vreal min(Q = MS) ; (26)

where Vreal min is the value of the realistic minimum, given by eq.(10), and VUFB�2
is evaluated at an appropriate scale Q̂. More precisely Q̂ must be of the same

order as the most signi�cant mass along this UFB-2 direction, which is Q̂ �

Max(g2jH2j; �topjH2j; MS).

3It is trivial to check that the remaining condition in order to get a true minimum in the tree-level

potential of eq.(21), @V=@H2 = 0, cannot be ful�lled. This result contradicts the usual statement

that can be found in the literature, namely that (tree-level) spontaneous lepton number breaking, and

therefore R{parity breaking, generating a majoron is possible in SUSY without introducing additional

�elds, since the scalar partner of the neutrino may acquire a non{vanishing VEV [10].

7



This direction is dangerous not only because in general the Higgses get too large

VEVs but also because the breaking of lepton number through the VEV of the

sneutrino leads to the existence of a majoron already excluded by experimental

results [11].

Let us �nally note that the last identity of eq.(22b) relies on the equality m2
1 �

m2
Li
= �2, which only holds under the assumption of degenerate soft scalar masses

for H1 and Li at MX and in the approximation of neglecting the bottom and

tau Yukawa couplings in the RGEs. Otherwise, one simply must replace �2 by

m2
1 �m2

Li
everywhere in eqs.(22{25).

UFB-3

The only remaining possibility is to take H1 = 0. Then, the H1 F{term can be

cancelled with the help of the VEVs of d{type squarks of a particular generation,

say dLj ; dRj
, without contributing to further quartic terms. More precisely����� @W@H1

�����
2

=
����H2 + �djdLjdRj

���2 = 0 : (27)

Taking the VEVs dLj = dRj
� d, the SU(3) D{term remains vanishing. The main

consequence of taking these VEVs as in eq.(27) is to modify the H2 mass term

from m2
2jH2j

2 to (m2
2 � �2)jH2j

2. It is important to note that this trick cannot

be used if H1 6= 0, as happens in the UFB{2 direction, since then the dLj ; dRj
F{

terms would eventually dominate. Now, in order to cancel (or keep under control)

the SU(2)L and U(1)Y D{terms we need the VEV of some additional �eld, which

cannot be H1 for the above mentioned reason. Once again the optimum choice

is a slepton Li along the �L direction, as in the UFB{2 case. Consequently, the

relevant potential reads

V = (m2
2��

2)jH2j
2+(m2

Qj
+m2

dj
)jdj2+m2

Li
jLij

2+
1

8
(g02+g22)(jH2j

2+jdj2�jLij
2)2:

(28)

This was the kind of possible UFB direction �rst noticed in the interesting work

of ref.[5] taking a particular combination of the VEVs of H2; dLj ; dRj
; Li (see

eq.(6)), which is not the optimum one. It is straightforward to see that the

deepest direction in the �eld{space is

jLij
2 =

�4m2
Li

g02 + g22
+ (jH2j

2 + jdj2) ; (29a)

d2 = �
�

�dj
H2 ; (29b)

provided that

jH2j >

vuut �2

4�2dj
+

4m2
Li

g02 + g22
�

j�j

2�dj
; (30)

otherwise the optimum value for Li is Li = 0. Now, from (28), (29a), (29b), we

can write down the (tree-level) potential along the UFB-3 direction

VUFB�3 =
h
m2

2 � �2 +m2
Li

i
jH2j

2+
j�j

�dj

h
m2

Qj
+m2

dj
+m2

Li

i
jH2j�

2m4
Li

g02 + g22
: (31)
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If H2 does not satisfy (30), then

VUFB�3 =
h
m2

2 � �2
i
jH2j

2+
j�j

�dj

h
m2

Qj
+m2

dj

i
jH2j+

1

8
(g02+g22)

"
jH2j

2 +
j�j

�dj
jH2j

#2
:

(32)

Analogously to the UFB{2 case, what should be demanded is that, for any value

of jH2j < MX ,

VUFB�3(Q = Q̂) > Vreal min(Q = MS) ; (33)

where Vreal min is the value of the realistic minimum, given by eq.(10), and VUFB�3

is evaluated at an appropriate scale Q̂. In this case Q̂ � Max
�
g3jdj; �uj jdj; g2jH2j;

�topjH2j; g2jLij; MS). From eqs.(31{33), it is clear that the larger �dj the more

restrictive the constraint becomes. Consequently, the optimum choice of the d{

type squark is the third generation one, i.e. dj = sbottom. We have considered

anyway the three possibilities, con�rming this expectative.

Finally, it is relevant to note that the job of the dLj ; dRj
squarks in eq.(27) can

be done by eLj ; eRj
sleptons with j 6= i (this was not noted in ref.[5]). Then

everything between eq.(27) and eq.(33) remains identical with the substitutions

d! e ; �dj ! �ej ; Qj ! Lj : (34)

This is true in particular for eq.(33) and eqs.(31,32), which represent the form of

the UFB-3 bound. The appropriate scale, Q̂, to evaluate VUFB�3 is now given by

Q̂ � Max(g2jej; g2jH2j; �topjH2j; g2jLij;MS). For the same reasons as before the

optimum choice for the ej slepton is the third generation one, i.e. ej = stau. In

fact, this turns out to be the optimum choice for the UFB-3 direction (note e.g.

that the second term in eq.(31) is now proportional to the slepton masses and

thus smaller) and will represent, as we will see in sect.6, the strongest one of all

the UFB and CCB constraints in the parameter space of the MSSM.

This completes the UFB directions and bounds to take into account in the MSSM.

4 Improved CCB constraints

These constraints arise from the existence of charge and color breaking (CCB) minima

in the potential deeper than the realistic minimum. We have already mentioned the

\traditional" CCB constraint [1] of eq.(5). Other particular CCB constraints have

been explored in the literature [3, 4, 5, 12]. In this section we will perform a complete

analysis of the CCB minima, obtaining a set of analytic constraints that represent the

necessary and su�cient conditions to avoid the dangerous ones. As we will see, for

certain values of the initial parameters, the CCB constraints \degenerate" into the

previously found UFB constraints since the minima become unbounded from below

directions. In this sense, the following CCB constraints comprise the UFB bounds of

the previous section, which can be considered as special (but extremely important as

we will see in sect.6) limits of the former.

On the other hand, we will introduce the one-loop radiative corrections in a con-

sistent way, a fact that has not been properly considered up to now. Actually, as has

9



been explained in the Introduction, the radiative corrections to the potential can be

reasonably approximated by zero provided that we are evaluating the tree-level poten-

tial at the appropriate scale. Therefore, it is still possible to perform the exploration

of the CCB minima by using the tree-level potential. This simpli�es enormously the

analysis, which otherwise would be an impossible task. At the end of the day, however,

it is crucial to substitute the correct scale (for more details see subsect.4.5). This pro-

cedure will allow us also to re-evaluate the restrictive power of the \traditional" CCB

constraints 4, which will be shown in sect.6.

4.1 General properties

Let us enumerate a number of general facts which are relevant when one is looking for

CCB constraints in the MSSM. The proof of the properties 1, 3, 5 below is left for the

Appendix, giving here intuitive arguments of their validity.

1 The most dangerous, i.e. the deepest, CCB directions in the MSSM potential

involve only one particular trilinear soft term of one generation (see eq.(2c)).

This can be either of the leptonic type (i.e. Aei�eiLiH1ei) or the hadronic type

(i.e. Aui�uiQiH2ui or Adi�diQiH1di). Along one of these particular directions

the remaining trilinear terms are vanishing or negligible. This is because the

presence of a non-vanishing trilinear term in the potential gives a net negative

contribution only in a region of the �eld space where the relevant �elds are of

order A=� with � and A the corresponding Yukawa coupling and soft trilinear

coe�cient; otherwise either the (positive) mass terms or the (positive) quartic

F{terms associated with these �elds dominate the potential. In consequence two

trilinear couplings with di�erent values of � cannot e�ciently \cooperate" in any

region of the �eld space to deepen the potential. Accordingly, to any optimized

CCB constraint there corresponds a unique relevant trilinear coupling.

2 One cannot say a priori which trilinear coupling gives the strongest constraints.

In particular, contrary to what was claimed in [4] and used in [12], it is not true

that the trilinear terms with bigger Yukawa couplings are the most important

ones. This is easy to understand since, although the (negative5) trilinear terms,

e.g. Aui�uiQiH2ui, are in principle more important for larger �ui couplings, the

(positive) quartic terms, �2ui fjQiuij
2 + jQiH2j

2 + jH2uij
2
g, are more important

too. So there is a balance and one cannot predict which coupling size, large or

small, will give the most restrictive constraint. We have examples in both senses.

3 If the trilinear term under consideration has a Yukawa coupling �2 � 1, which

occurs in all the cases except for the top, then along the corresponding deepest

CCB direction the D-term must be vanishing or negligible. Although this may

seem quite intuitive, some authors, particularly in ref.[4], have argued that by

taking VEVs of the uL and uR squarks much smaller than that of H2, and other

�elds VEVs being zero (so that the SU(2)L � U(1)Y D-term is non-vanishing),

a non-trivial CCB constraint appears. The trouble of their argument is that

4For a recent partial analysis of this issue using the one-loop potential, see ref.[13].
5Recall that the phases of the �elds can always be taken so that the trilinear scalar terms in (2c)

are negative.
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they �x H1 = 0 by hand. However, this does not occur neither in the realistic

minimum nor, necessarily, in any optimized CCB direction. We have redone their

analysis in this point, allowing H1 to participate in the game. Then, one obtains

a modi�ed constraint (that substitutes the one written in eq.(23) of ref.[4]), which

turns out to be equivalent to require positive physical masses for the uL and uR
squarks (for more details see the Appendix).

4 For a given trilinear coupling under consideration there are two di�erent relevant

directions to explore. Next, we illustrate them taking the trilinear coupling of

the �rst generation, Au�uQuH2uR, as a guiding example, specifying how the

directions are generalized to the other couplings.

Direction a)

H2; Qu; uR 6= 0 (35a)

jdLj j
2 = jdRj

j
2 (35b)

dLjdRj
= �

�

�dj
H2 (35c)

H1 = 0 or negligible (35d)

Possibly Li 6= 0 (35e)

where Qu takes the VEV along the uL direction and dLj , dRj
are d{type squarks

such that

�dj � �u ; (36)

and whose VEVs are chosen to cancel the H1 F{term

����� @W@H1

�����
2

=
����H2 + �djdLjdRj

���2 = 0 : (37)

From (36) and (35c) it follows6 that jdLj j
2
� jH2j

2; jQuj
2; juRj

2, thus the con-

tribution of dLj ; dRj
to the D{terms and the mass soft{terms is negligible. The

net e�ect of the dLj ; dRj
VEVs of eqs.(35b,35c) is therefore to decrease the H2

squared mass from m2
2 to7 m2

2 � �2. This interesting fact was �rst observed in

ref.[5]. The same job of the dj squarks can be done by eLj , eRj
sleptons provided

that �ej � �u. H1 must be very small or vanishing, [eq.(35d)], otherwise the

(positive) dLj and dRj
F{terms, �2dj

n
jH1dRj

j
2 + jdLjH1j

2
o
, would clearly domi-

nate the potential. Note that this is also in agreement with the mentioned prop-

erty 1, i.e. along a relevant CCB direction in the �eld-space only one trilinear

scalar coupling can be non-negligible.

In addition to H2; Qu; uR; dLj ; dRj
, other �elds could take extra non-vanishing

VEVs, but as in the above-explained UFB-2 direction (see sect.3) and for similar

reasons, it turns out that the optimum choice is Li 6= 0, eq.(35e), with the VEV

6The VEVs of the H2; Qu; uR �elds are always of order Au=�u, as we will see below.
7Note that m2

2��
2 is simply the soft mass of H2, since in the de�nition of m2

2 is also absorved the

H1 F{term, j�H2j
2 (see sect.2).
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along the �L direction (this was not considered in ref.[5]). As we will see, in some

special cases �L 6= 0 can be advantageously replaced by8 eL 6= 0, eR 6= 0. We will

not consider this possibility for the moment.

Consequently, the tree-level scalar potential along this (a) direction takes the

form

V = �2u

n
jH2uRj

2 + jQuH2j
2
j+ jQuuRj

2
o

+ D � terms

+ m2
Qu
jQuj

2 +m2
ujuRj

2 + (m2
2 � �2)jH2j

2 +m2
Li
jLij

2

+ (Au�uQuH2uR + h:c:) ; (38)

where we have neglected the contribution of dLj ; dRj
to the mass and D terms.

The generalization of this (a) direction to other couplings di�erent from

Au�uQuH2uR is as follows. If the trilinear term under consideration is the charm

one, i.e. Ac�cQcH2cR, everything works as before with the obvious replacement

u ! c in eqs.(35{38). For the top trilinear term, however, this direction can-

not be applied, since eq.(36) cannot be ful�lled. If the trilinear term is of the

Adk�dkQkH1dk type, everything is similar interchanging H2 by H1 and u by dk.

As we will see, for these couplings the presence of an extra VEV for a slepton

occurs normally along the eL 6= 0, eR 6= 0 direction rather than �L 6= 0. In

any case, the sleptons must be chosen from generations satisfying �ei � �dk in

order to make the quartic F-terms associated with them negligible (this choice

is always possible). Let us also note that the above consideration for the top

trilinear coupling is analogously applicable for the bottom if tan � >
� 4. Finally,

the direction (a) is generalized to the leptonic couplings, Aek�ekLkH1ek, in a sim-

ilar way to that of the Adk�dkQkH1dk couplings. Now of course the role of the

possible extra leptonic VEVs must be played by other sleptons, say L0
i, e

0
Ri
, from

a lower generation than the leptonic coupling under consideration. This excludes

the possibility of extra leptonic VEVs if the latter corresponds to the electron.

Direction b)

H2; Qu; uR;H1 6= 0 ; (39a)

Possibly Li 6= 0 ; (39b)

where Qu takes the VEV along the uL direction. Note that, according to the

general property 1 (see also Appendix), once we allow H1 to participate in the

game, as reected in eq.(39a), the remaining squark and slepton �elds, apart from

those involved in the trilinear coupling, must be vanishing. The only possible

exception is again a slepton Li VEV along the �L 6= 0 direction. (Or, in some

special cases, along the eL; eR 6= 0 direction. Then, since H1 6= 0, the associated

Yukawa coupling must satisfy �ei � �u in order not to generate extra quartic

F-terms; this requires tan � <
� 3.)

8eL, eR can be chosen from di�erent generations in order to avoid the appearance of extra quartic

F-terms. Alternatively, if �u � �e (as happens if the lepton is of the �rst generation and tan � <
�
3)

these new F-terms are negligible. Working under the assumption of universality of the soft terms both

choices are equivalent.
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Therefore, along the (b) direction the tree-level scalar potential takes the form

V = �2u

n
jH2uRj

2 + jQuH2j
2 + jQuuRj

2
o

+ (��uQuuRH
�
1 + h:c:) + D � terms

+ m2
Qu
jQuj

2 +m2
ujuRj

2 +m2
2jH2j

2 +m2
1jH1j

2 +m2
Li
jLij

2

+ (Au�uQuH2uR + h:c:) + (�BH1H2 + h:c:) : (40)

Notice that (��uQuuRH
�
1 + h:c:) is a piece of the H2 F-term, j@W=@H2j

2. Recall

that the j�H1j
2 piece of this F-term has been absorved in the de�nition of m2

1

(see sect.2).

The direction (b) is generalized to the other trilinear couplings in a similar way

as it was done for direction (a). Let us mention that when dealing with these

remaining couplings there are no restrictions at all on the value of tan �. From

previous arguments, for the top coupling the direction (b) is the only one to be

taken into account.

5 Let us �nally comment on the choice of the phases of the various �elds involved

in the previous (a) and (b) directions. Again, we continue using the trilinear cou-

pling of the �rst generation Au�uQuH2uR as a guiding example, but the following

statements are trivially generalized to the other couplings.

If H1 = 0, i.e. direction (a), it is easy to see from (38) that the only term in

the potential without a well-de�ned phase is the trilinear scalar term. Obviously,

the �elds involved in the coupling can take phases so that it becomes negative

without altering other terms in (38). This clearly corresponds to the deepest

direction in the �eld-space. Then, in eq.(38), we can write the trilinear term as

�2jAu�uQuH2uRj : (41)

If H1 6= 0 (direction (b)) there are clearly three terms in the potential of eq.(40)

whose phases are in principle undetermined. These can be written as

2jAu�uQuH2uRj cos'1 + 2j��uQuH1uRj cos'2 + 2j�BH1H2j cos'3; (42)

where 'i are obvious combinations of the signs of Au; B; �; �u and the phases of

the �elds. Note that '1, '2, '3 are correlationated parameters. Now, it can be

shown (see Appendix) that

� If sign(Au) = �sign(B), the three terms can be made negative simulta-

neously, so that after a convenient rede�nition of the �elds we can take

'1 = '2 = '3 = �.

� If sign(Au) = sign(B) the previous choice is no longer possible. Then, for

the vaste majority of the cases the deepest direction in the ('1; '2; '3) space

corresponds to take 'i = 'j = �, 'l = 0, where 'l corresponds to the

smallest term (in absolute value) in eq.(42) and 'i; 'j are the other two

angles. For the remaining cases this always corresponds to a direction very

close to the deepest one.
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4.2 CCB constraints associated with the QuH2uR coupling

Using the previous general properties it is possible to completely classify the CCB

constraints in the MSSM. According to property 1, there can only be one relevant

trilinear coupling associated to an optimized CCB constraint. Now, as we did in

the previous property 4, we will take the trilinear coupling of the �rst generation,

Au�uQuH2uR, as a guiding example to explain the associated CCB bounds, specifying

how they are generalized to the other couplings.

The bounds arise from the previously expounded (a) and (b){directions, see eqs.(35)

and (39) respectively. For a given choice of the initial parameters m;M;A;B; �; �top,

compatible with electroweak breaking and M exp
top , one can in principle write down the

scalar potential (either eq.(38) or eq.(40)) at any scale and directly minimize it with

respect to the scalar �elds involved. Then, the possible CCB minima arising should

be compared to the realistic minimum (10) in order to decide what is the deepest one.

Of course, all this should be performed at the correct scale in order to incorporate

the radiative corrections properly (recall that this scale depends itself on what are the

relevant VEVs of the �elds at the CCB minimum under consideration).

Unfortunately, despite the form of the potential in eqs.(38), (40) is much simpler

than the general expression of eq.(1), it is still not possible to implement the previous

program in a complete analytical way. The outcoming equations are in general so in-

volved that they become useless for practical purposes. Alternatively, one could follow

a numerical procedure, trying to �nd out (for each choice of the initial parameters)

the corresponding CCB minima. This is, however, quite dangerous since there is still

a considerable number of independent variables and the minima usually emerge from

subtle cancellations between di�erent terms, something that can easily escape a stan-

dard program of numerical minimization. In addition, with the numerical approach

the �nal form for the CCB bounds is very uneasy to handle and we lose the track of

the physical reasons behind it. Fortunately, it becomes now feasible to go quite far

in the analytic examination of the general CCB minima, in some cases until the very

end of the analysis, thus obtaining very useful constraints expressed in an analytical

way. This is the kind of approach we have followed in the paper. As we will see, the

�nal implementation of these constraints usually requires a complementary, but trivial,

numerical task, namely the scanning of a certain variable in the range [0,1].

In order to write the CCB constraints it is helpful to express the various VEVs in

terms of the H2 one, using the following notation [4]

jQuj = �jH2j ; juRj = �jH2j ;

jH1j = jH2j ; jLij = LjH2j : (43)

E.g. the \traditional" direction, eq.(4), is recovered for the particular values � = � = 1,

 = L = 0.

We shall write now the form of the potential for the directions (a), (b), obtaining

from its minimization the general form of the CCB bounds. It is convenient for this

task to start with the (b) direction in the sign(Au) = �sign(B) case, extending at the

end the results to the sign(Au) = sign(B) case and to the (a) direction. The scalar

potential along the direction (b), see eq.(40), can be expressed as

V = �2uF (�; �; ; L)�
2�2jH2j

4
� 2�uÂ()��jH2j

3 + m̂2(�; �; ; L)jH2j
2 ; (44)
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where

F (�; �; ; L) = 1 +
1

�2
+

1

�2
+
f(�; �; ; L)

�2�2
;

f(�; �; ; L) =
1

�2u

�
1

8
g22

�
1 � �2 � 2 � 2L

�2

+
1

8
g0
2
�
1 +

1

3
�2 �

4

3
�2 � 2 � 2L

�2
+

1

6
g23

�
�2 � �2

�2)
;

Â() = jAuj+ j�j ;

m̂2(�; �; ; L) = m2
2 +m2

Qu
�2 +m2

u�
2 +m2

1
2 +m2

Li
2L � 2jm2

3j : (45)

(The Li VEV has been taken along the direction �L since otherwise the D{terms cannot

be eventually cancelled.) Then, minimizing V with respect to jH2j for �xed values of

�; �; ; L, we �nd, besides the jH2j = 0 extremal (all VEVs vanishing), the following

CCB solution

jH2jext = jH2(�; �; ; L)jext =
3Â

4�u��F

8<
:1 +

s
1�

8m̂2F

9Â2

9=
; : (46)

It is easy to check that the solution with a minus sign in front of the square root in the

previous equation corresponds to a maximum. Let us note that, as was stated above

(see property 1 and footnote 6), the typical VEVs at a CCB minimum are indeed of

order A=�. The corresponding value of the potential is

VCCB min = �
1

2
��jH2j

2
ext

 
Â�ujH2jext �

m̂2

��

!
: (47)

Eqs.(44{47) generalize those obtained in ref.[4].

Since the trilinear term of our guiding example has small coupling, �2u � 1, accord-

ing to the above property 3 the D{terms should vanish. This implies

�2 � �2 = 0 ; (48a)

1 � �2 � 2 � 2L = 0 : (48b)

As a consequence f(�; �; ; L) becomes vanishing and F = 1 + 2
�2
. Let us note

that eq.(48b) can only be ful�lled if 1 � �2 � 2 � 0. In fact, playing only with

the H2; Qu; uR;H1; Li �elds this is a necessary condition to cancel the D{terms. If

1 � �2 � 2 < 0 the cancellation can only be achieved by including additional �elds.

By inspection, the best choice is to take the Li VEV along the eL direction plus an

additional VEV eRj
= eLi. Then the D{terms are cancelled and eq.(48b) becomes

1� �2 � 2 + 2L = 0 : (49)

In this case one has to replace m2
Li

by m2
Li
+m2

ej
in the de�nition of m̂2, eq.(45). We

will not consider this possibility for the moment postponing for later the discussion of

the only situation in which it could be relevant.

15



The previous CCB minimum, eq.(47), will be negative9 unless Â2
� Fm̂2, i.e.

(jAuj+ j�j)
2
�

�
1 +

2

�2

� h
m2

2 + (m2
Qu

+m2
u)�

2 +m2
1

2 +m2
Li
2L � 2jm2

3j
i

(50)

where for convenience we have explicitly kept the dependence in the three variables

�; ; L, which are subject to eq.(48b). Since �2u � 1, if (50) were not satis�ed the

corresponding CCB minimum of eq.(47) would be much deeper (/ �1=�2u) than the

realistic one (/ �1=g22), eq.(10). Consequently, eq.(50) is the general form of the CCB

bound for the (b){direction when sign(Au) = �sign(B) and the Yukawa coupling is

much smaller than one, as it is the case at hand. Let us remark that (50) should be

satis�ed for any choice of �; ; L obeying eq.(48b). E.g. the \traditional" bound,

eq.(5), is recovered for the particular choice � = 1;  = L = 0.

When sign(Au) = sign(B) one of the three terms fjAuj; j�j;�2jm
2
3jg in eqs.(45,

50) must ip the sign (see property 5 of the previous subsection).

For the (a){direction all the equations (44-50) hold making  = 0, m2
2 ! m2

2 � �2.

In particular eq.(50) with these replacements, i.e.

jAuj
2
�

�
1 +

2

�2

� h
m2

2 � �2 + (m2
Qu

+m2
u)�

2 +m2
Li
2L

i
; (51)

represents the general form of the CCB bounds for direction (a).

Clearly, the strongest CCB constraints from (50) and (51) arise for particular values

of �; ; L, which, in turn, depend on what are the values of various parameters involved

in the expressions. This allows us to be more explicit about the �nal analytical form

of the CCB constraints and to classify them below:

CCB-1

This bound arises by considering the direction (a) and thus the general condition

(51). Then the strongest constraint is obtained by minimizing the right hand

side of (51) with respect to �, keeping 2L = 1 � �2. This gives the following

1. If m2
2 � �2 +m2

Li
> 0 and 3m2

Li
� (m2

Qu
+m2

u) + 2(m2
2 � �2) > 0, then the

optimized CCB-1 bound occurs for � = 1, L = 0, i.e.

jAuj
2
� 3

h
m2

2 � �2 +m2
Qu

+m2
u

i
(52)

2. If m2
2 � �2 +m2

Li
> 0 and 3m2

Li
� (m2

Qu
+m2

u) + 2(m2
2 � �2) < 0, then the

optimized bound occurs for �; L 6= 0, namely

jAuj
2
�

�
1 +

2

�2

� h
m2

2 � �2 + (m2
Qu

+m2
u)�

2 +m2
Li
(1 � �2)

i
(53)

with �2 =

s
2(m2

Li
+m2

2
��2)

m2

Qu
+m2

u�m
2

Li

, 2L = 1 � �2.

3. If m2
2��2+m2

Li
< 0, then the CCB-1 bound is automatically violated since

there are many values of � that make the right hand side of (51) negative.

In fact the minimization of the potential in this case gives �2 ! 0, and we

are exactly led to the UFB-3 direction explained in sect.3, which represents

the correct analysis in this instance.

9The mere existence of a CCB minimum is discarded by demanding Â2 < (8=9)Fm̂2, see eq.(46).
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Let us mention that the bound (52) was �rst obtained in ref.[5]. However it

seldom represents the optimized bound, as long as the condition for this (see

above eq.(52)) will not normally be satis�ed. Hence, eq.(53) will usually represent

the (optimized) CCB-1 bound. Needless to say that the CCB-1 bound is always

stronger than the \traditional" CCB bounds [1], see eq.(5).

Finally, in the very unlikely case that 3(m2
Li
+m2

ej
)+(m2

Qu
+m2

u)�2(m
2
2��

2) < 0,

which only can take place in (very strange) non-universal cases, then the CCB-1

bound would be given by

jAuj
2
�

�
1 +

2

�2

� h
m2

2 � �2 + (m2
Qu

+m2
u)�

2 + (m2
Li
+m2

ej
)(�2 � 1)

i
(54)

with �2 =

s
2(m2

2
��2�m2

Li
�m2

ej
)

m2

Qu
+m2

u+m
2

Li
+m2

ej

, 2L = �2 � 1.

CCB-2

This bound arises from direction (b), i.e.  6= 0, when sign(Au) = �sign(B). The

corresponding CCB constraint is given by (50) with 2L = 1� �2 � 2, that is

(jAuj+ j�j)
2
�

�
1 +

2

�2

�
[m2

2 + (m2
Qu

+m2
u)�

2 +m2
1

2

+ m2
Li
(1� �2 � 2)� 2jm2

3j ] (55)

which should be handled in the following way:

1. Scan  in the range 0 �  � 1

2. For each value of  the optimum value of �2, i.e. the one that minimizes

the right hand side of (55), is in principle given by

�4ext =
2
h
m2

2 +m2
1

2 +m2
Li
(1� 2)� 2jm2

3j
i

m2
Qu

+m2
u �m2

Li

(56)

Under the assumption of universality the denominator of (56) is always pos-

itive. On the other hand, the numerator should also be positive, otherwise

the optimum value of � is � ! 0 and we are exactly led to the UFB-2

direction explained in sect.3.

3. If �2ext < 1�2, then �2ext is indeed the optimum value of �2 to be substituted

in (55).

4. If �2ext > 1 � 2, then the D{terms cannot be cancelled with � = �ext [see

eq.(48b)]. This could be in principle circumvected by including a VEV for

the eRj
slepton, as explained around eq.(49). Then 2L = �2+2�1 and the

m2
Li
(1��2�2) term in (55) must be replaced by (m2

Li
+m2

ej
)(�2+2�1).

The new optimum value of �ext would be in principle given by

�04ext =
2
h
m2

2 +m2
1

2
� (m2

Li
+m2

ej
)(1 � 2)� 2jm3j

2
i

m2
Qu

+m2
u +m2

Li
+m2

ej

(57)

If �02ext > 1�2, then �02ext is indeed the optimum value of �2 to be substituted

in (55) together with the previous replacements. If �02ext < 1 � 2, then the

optimum value of �2 is simply �2 = 1 � 2 (which is equivalent to L = 0),

which should be substituted in (55).
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CCB-3

This bound, that also arises from direction (b), is to be applied when

sign(Au) = sign(B). It takes exactly the same form as the CCB-2 one (see

above), but ipping the sign of one of the three terms fjAuj; j�j;�2jm
2
3jg in

(55). Notice that, due to the form of (55) ipping the sign of jAuj or the sign of

j�j leads to the same result. Therefore, there are only two choices to examine:

the �rst one writing (jAuj � j�j)
2
in the left hand side of (55), the second one

writing +2jm2
3j in the right hand side of (55) and hence in those of (56) and

(57).

(Since one cannot know a priori what of the terms listed in eq.(42) is going to have

the smallest absolute value at the CCB minimum, one cannot be sure from the

beginning which one of the two choices will be the optimum one. Consequently,

the fastest way to handle this is simply to perform the examination twice.)

Let us �nish this subsection by noting that none of the previous CCB bounds depend

on the size of the Yukawa coupling �u (except for the fact that �u � 1 has been

assumed). However this fact will change as soon as we estimate the appropriate scale,

Q, to evaluate them because the size of the tipical VEVs in the CCB minimum does

depend on �u, see eq.(46). This issue will be examined in subsect.4.5.

4.3 Generalization to other couplings

The previous bounds CCB-1 { CCB-3 can be straightforwardly generalized to all the

couplings with coupling constant � � 1. This includes all the couplings apart from

the top. There are however slight di�erences depending on the Higgs �eld (H1 or H2)

involved in the coupling. Thus we expose the various generalizations in a separate way.

�cQcH2cR

The CCB constraints associated with this coupling have exactly the same form as

those for the �uQuH2uR coupling, i.e. the CCB-1 { CCB-3 bounds, with the obvious

replacement u! c.

�dQuH1dR, �sQcH1sR, �bQtH1bR

When dealing with these couplings it is convenient to change the notation (43), ex-

pressing all the VEVs in terms of the H1 one, i.e.

jQuj; jQcj or jQtj = �jH1j ; jdRj; jsRj or jbRj = �jH1j ;

jH2j = jH1j ; jLij = LjH1j ; (58)

where Qu; Qc; Qt take the VEVs along the dL; sL; bL directions respectively. Then, all

the results and equations of subsect.4.2, from eq.(44) until the end of the subsection,

hold with the following replacements everywhere

H1 $ H2 ; m2
Li
$ (m2

Li
+m2

ej
) ;

m1 $ m2 ; u! d; s or b : (59)

Note in particular that if 1��2�2 > 0, the cancellation of the D{terms requires equal

VEVs for Li (along the eL direction) and eRj
, while if 1 � �2 � 2 < 0 the D{terms
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can be cancelled just with Li 6= 0 (along the �L direction). This works exactly in the

opposite way to that of the �uQuH2uR case.

The modi�cations in the CCB-1 { CCB-3 bounds can be straightforwardly obtained.

They remain the same with the previous eq.(59) substitutions.

�eLeH1eR, ��L�H1�R, ��L�H1�R

The CCB bounds from these couplings have essentially the same form as the just

mentioned d-type ones. All the results and equations of subsect.4.2, from eq.(44) until

the end of the subsection, hold with the following replacements

H1 $ H2 ; m1 $ m2

Q ! L ; m2
Li
! (m2

L0
i
+m2

e0
j
) ;

u ! e; � or � ; (m2
Li
+m2

ej
)! m2

L0
i
: (60)

Then Le; L�; L� take the VEVs along the eL; �L; �L directions respectively. The role

of the sleptons Li, eRj
in the previous subsection is played now by two sleptons L0

i,

e0Rj
of a di�erent generation than the trilinear coupling under consideration. In the

bounds where both L0
i (along the direction e0L) and e0Rj

take non-vanishing VEVs, the

associated Yukawa coupling, say �0l, must be much smaller than the Yukawa coupling

of the trilinear coupling under consideration, say �l, in order to avoid the appearance

of large F{terms. Obviously this condition can always be satis�ed except when the

coupling under consideration is of the �rst generation (i.e. the electron one). Then

this kind of extra VEVs cannot be used, so the optimum value for the \prime" sleptons

is e0L = e0R = 0, i.e. L = 0.

Under the assumption of universality it is easy to see that the CCB-1 bound will

only take place in the possibility 1 [see condition above eq.(52)], while the CCB-2,

CCB-3 bounds will always occur in the possibility 4 (note that the denominator of

eq.(56) goes to zero).

4.4 The case of the top

Much of the expounded in subsect.4.2 about the �uQuH2uR coupling is still valid for the

top one. More precisely, the eqs.(43{47) hold with the replacement u ! t. However,

the top trilinear coupling represents a special case due to have the largest Yukawa

coupling constant, �t. This is reected in the three following di�erences:

� The D-terms along an optimized CCB direction are no longer vanishing or negligi-

ble, since �t = O(1), which implies that the D{terms and the F{terms have orders

of magnitude comparable [see property 3 in sect.4.1]. Consequently, eqs.(48) or

(49) should not be imposed now.

� The direction (a) speci�ed in eqs.(35) is no longer applicable due to the absence

of d{type squarks such that �dj � �t. Consequently, the only direction to take

into account is the (b) one, eqs.(39), and the CCB-1 bound does not apply to the

top case.

� Since �t = O(1) it is no longer true that a negative minimum (/ �1=�2t ) asso-

ciated to the top trilinear coupling is necessarily much deeper than the realistic
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minimum (/ �1=g22), thus destabilizing the standard vacuum, as can be eas-

ily seen by examining eqs.(46,47,10). Therefore, rather than the absence of a

negative minimum, we must demand that the possible CCB minimum satis�es

VCCB min > Vreal min, where VCCB min; Vreal min are given by eqs.(47),(10).

In the following we will still use the SU(3) D{term cancellation condition

jQtj
2 = jtRj

2
! �2 = �2 ; (61)

taking the VEV of Qt along tL. This particular direction proves to be very close

to the deepest one, simplifying substantially the subsequent analysis. The analogous

approximation for the SU(2)�U(1)Y D{terms is, however, not good (this comes from

the smaller size of the associated gauge couplings), so we will allow them to be non-

vanishing.

Since we have to analyze the potential along the direction (b), we must keep in mind

that there are two di�erent scenarios depending on the relative sign of At and B, see

property 5 in subsect.4.1. In the following we will assume sign(At) = �sign(B), which

represents the simplest case. The extension of the results to the sign(At) = sign(B)

case is trivial and will be given at the end.

From (44, 45) we can optimize the value of L = jLij=jH2j. This is given by

(2L)ext = 1� 2 � �2 �
4m2

Li

(g02 + g22)jH2j
2
: (62)

Notice that this value is only acceptable if (2L)ext > 0, which, as we shall see, will have

to be checked at the end of the examination. Assuming for the time being that indeed

(2L)ext > 0, the potential (with L = (L)ext) is given from eq.(44) by

V = �2tF
0(�)�4jH2j

4
� 2�tÂ

0()�2jH2j
3 + m̂02(�; )jH2j

2
�

2m4
Li

g02 + g22
; (63)

with

F 0(�) = 1 +
2

�2
+

f 0

�4
; f 0 = 0 ;

Â0() = jAtj+ j�j ;

m̂02(�; ) = m2
2 + (m2

Qt
+m2

t )�
2 +m2

1
2 +m2

Li
(1� �2 � 2)� 2jm2

3j: (64)

This can be handled in the following way:

1. Scan  in the range 0 �  � 1

2. For each value of  the optimum values of �2, H2 i.e. the ones that minimize the

right hand side of (63), are given by

�2ext =
Â0()

�tjH2jext
� 1 �

m2
Qt

+m2
t �m2

Li

2�2t jH2j
2
ext

; (65)

jH2jext =
3Â0()

4�t�
2
extF

0(�ext)

8<
:1 +

vuut1 �
8m̂02(�ext; )F 0(�ext)

9Â02()

9=
; : (66)
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For each value of  the coupled equations (65), (66) can be solved, e.g. by a

numerical method. Then, the consistency of the procedure requires

�2ext > 0; jH2jext > 0; (2L)ext > 0 ; (67)

where �ext; jH2jext; (L)ext are given by eqs.(65), (66) and (62) respectively.

If (67) is ful�lled, then the corresponding value of the potential at the minimum

is given by

VCCB min = �
1

2
�2extjH2j

2
ext

 
�tÂ

0()jH2jext �
m̂02(�ext; )

�2ext

!
�

2m4
Li

g02 + g22
: (68)

This value will be negative unless Â02
� F 0m̂02, i.e.

(jAtj+ j�j)
2
�

�
1 +

2

�2

�
[m2

2 + (m2
Qt

+m2
t )�

2 +m2
1

2

+ m2
Li
(1� �2 � 2)� 2jm2

3j ] : (69)

E.g. the \traditional" CCB bound of the type of eq.(5) is recovered for the par-

ticular choice � = 1;  = 0. However, as mentioned above, a negative minimum

associated to the top trilinear coupling is not necessarily deeper than the realistic

minimum. Consequently, the CCB bound to be imposed has the form

VCCB min > Vreal min ; (70)

where VCCB min and Vreal min are given by eqs.(68) and (10) respectively.

3. If (67) is not ful�lled, this means that there is no CCB minimum with L =

(L)ext. Then, necessarily, the optimum value of L is

L = 0 ; (71)

which implies

V = �2tF
0(�; )�4jH2j

4
� 2�tÂ

0()�2jH2j
3 + m̂02(�; )jH2j

2 ; (72)

The optimum values of �, H2 are now given by

�2ext =
8�2t

g02 + g22 + 8�2t

"
Â0()

�tjH2jext
� 1�

m2
Qt

+m2
t

2�2t jH2j
2
ext

+
g02 + g22
8�2t

(1� 2)

#
(73)

jH2jext =
3Â0()

4�t�
2
extF

0(�ext; )

8<
:1 +

vuut1 �
8m̂02(�ext; )F 0(�ext; )

9Â02()

9=
; : (74)

with

F 0(�; ) = 1 +
2

�2
+

f 0

�4
;

f 0 =
g02 + g22
8�2t

�
1 � �2 � 2

�2
;

m̂02(�; ) = m2
2 +

�
m2

Qt
+m2

t

�
�2 +m2

1
2
� 2jm2

3j : (75)
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Consistency now requires

�2ext > 0; jH2jext > 0 : (76)

Otherwise there is no CCB minimum for the particular value of  being scanned.

If (76) is satis�ed, then the value of the potential at the minimum is given by

VCCB min = �
1

2
�2extjH2j

2
ext

 
Â0()�tjH2jext �

m̂02(�ext; )

�2ext

!
: (77)

and the CCB bound takes again the form

VCCB min > Vreal min : (78)

When sign(At) = sign(B) the analysis is exactly the same but, as usual, one of the

three terms proportional to jAtj; j�j; jm
2
3j in eqs.(64), (75) must ip its sign.

Let us �nally note that if tan � is large (tan� >
� 15), then �b = O(1) and the analysis

of this subsection is also the correct one for the bottom, performing the substitutions

H1 $ H2 ; m2
Li
! (m2

Li
+m2

ej
) ;

m1 $ m2 ; t! b : (79)

4.5 The choice of the scale

As is well known (see e.g. ref. [14]) the complete e�ective potential, V (Q;��(Q); m�(Q);

�(Q)) (in short V (Q;�)), where Q is the renormalization scale, ��(Q);m�(Q) are

running parameters and masses, and �(Q) are the generic classical �elds, is scale-

independent, i.e.
dV

dQ
= 0 : (80)

This property allows in principle a di�erent scale for each value of the classical �elds, i.e.

Q = f(�). Denoting by h�i the VEVs of the �{�elds obtained from the minimization

condition on V , it is clear that the two following minimization conditions

@V (Q = f(�); �)

@�
= 0 (81)

@V (Q;�)

@�

�����
Q=f(�)

= 0 (82)

yield equivalent results for h�i (for a more detailed discussion see ref.[15]).

The previous results apply exactly only to the complete e�ective potential. In practice,

however, we can only know V with a certain degree of accuracy in a perturbative

expansion. In particular, at one-loop level

V1 = Vo(Q;�) + �V1(Q;�) (83)

where Vo is the (one-loop improved) tree-level potential and �V1 is the one-loop radia-

tive correction to the e�ective potential

�V1 =
X
�

n�

64�2
M4

�

"
log

M2
�

Q2
�

3

2

#
; (84)
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with M2
�(Q) being all the (in general �eld{dependent) tree-level squared mass eigen-

states (see also eq.(8)). V1(Q;�) does not obey eq.(80) for any Q, but it is clear that

in the region of Q of the order of the most signi�cant masses appearing in (84), the

logarithms involved in the radiative corrections, and hence the radiative corrections

themselves, are minimized, thus improving the perturbative expansion. As a matter

of fact, in that region of Q, V1 is approximately scale-independent [6, 7], so eq.(80)

is nearly satis�ed. Consequently, by choosing an appropriate value of Q, eqs.(81) and

eq.(82), plugging V ! V1, produce essentially the same values of h�i, although, of

course, eq.(82) is much easier to handle. This statement can be numerically con�rmed,

see e.g. ref.[15].

Finally, choosing a Q scale, say Q̂, such that @�V1=@� = 0, we will get the same

results from eq.(82) using V1 or10 Vo. On the other hand Q̂ always belongs to the

above-mentioned stability region since at Q̂ the logarithms involved in �V1, and �V1
itself, are necessarily small, thus optimizing the perturbative expansion. For the CCB

directions the equation @�V1=@� = 0 amounts to a extremely involved condition but

from the previous arguments it is su�ciently good for our calculation to take Q̂ of the

order of the most signi�cant M� mass appearing in (84) (the precise value is irrelevant),

thus suppressing the relevant logarithms, and then use eq.(82) plugging V ! Vo(Q̂).

This was also the procedure proposed in ref.[6].

Turning back to our speci�c task, we have to choose the appropriate scale Q̂ to evaluate

the existence of CCB minima in the potential and the subsequent CCB bounds. Now

in eq.(84), besides masses of order MS , there appear other (�eld-dependent) masses.

In general the latter will be much larger than MS since the typical magnitude of the

relevant �elds in a CCB minimum is O(MS=�). A more precise measure of the size

of the most signi�cant masses appearing in (84) comes from the explicit tree-level

expresions for the VEVs of the relevant �elds at the CCB minimum (see in particular

eq.(46)) and from the inspection of whatM� masses they give rise to in the Vo potential.

In this way we obtain the following estimations of the size of the appropriate scale,

Q̂, depending on the relevant trilinear coupling associated with the CCB bound under

consideration

�uQuH2uR; �cQcH2cR; �tQtH2tR : Q̂u;c;t � Max

 
MS ; g3

Au;c;t

4�u;c;t
; �t

Au;c;t

4�u;c;t

!

�dQuH1dR; �sQcH1sR; �bQtH1bR : Q̂d;s � Max

 
MS ; g3

Ad;s

4�d;s

!
;

Q̂b � Max

�
MS; g3

Ab

4�b
; �t

Ab

4�b

�

�eLeH1eR; ��L�H1�R; ��L�H1�R : Q̂e;�;� � Max

 
MS ; g2

Ae;�;�

4�e;�;�

!
(85)

Moreover, for Q̂d;s, Q̂e;�;� , if we are considering the CCB-2,3 bounds, which involve

H2 6= 0, we have to include �t
Ad;s
4�d;s

, �t
Ae;�;�
4�e;�;�

, respectively among the various quantities

within the parenthesis above.

10Actually, this has been our procedure in sect.2 when analyzing the realistic minimum, Vreal min.

We concluded there that a good choice of the scale in order to evaluate Vreal min was Q̂ =MS , where

MS (a certain average of the relevant M� masses) was given by eq.(11).
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Finally, let us note that a similar procedure for the choice of the Q̂ scale was carried

out in sect.3 for the UFB bounds.

Of course, the results for CCB and UFB bounds are quite stable against moderate

variations of the Q̂{scale.

5 Summary of UFB and CCB constraints

Here we summarize the two types of constraints, UFB and CCB, analyzed in sect.3

and sect.4 respectively, to which the reader is referred for further details.

5.1 UFB constraints

These constraints arise from directions in the �eld-space along which the (tree-level)

potential becomes unbounded from below (UFB). It is interesting to note that usually

this is only true at tree-level since radiative corrections eventually raise the potential

for large enough values of the �elds. This is the case of UFB-2,3 below.

UFB-1

The condition

m2
1 +m2

2 � 2jm2
3j (86)

must be veri�ed at any scale Q > MS and, in particular, at the uni�cation scale

Q =MX . MS is the typical scale of SUSY masses (see e.g. eq.(11)).

UFB-2

For any value of jH2j < MX satisfying

jH2j
2 >

4m2
Li

(g02 + g22)
h
1� jm3j4

(m2

1
�m2

Li
)2

i (87)

and provided that

jm2
3j < m2

1 �m2
Li

(88)

the following condition must be veri�ed:

VUFB�2(Q = Q̂) > Vreal min(Q = MS) ; (89)

where Vreal min is the value of the realistic minimum, given by eq.(10), Q̂ �

Max(g2jH2j; �topjH2j; MS), and

VUFB�2 =

"
m2

2 +m2
Li
�

jm3j
4

m2
1 �m2

Li

#
jH2j

2
�

2m4
Li

g02 + g22
: (90)

UFB-3

For any value of jH2j < MX satisfying

jH2j >

vuut �2

4�2ej
+

4m2
Li

g02 + g22
�

j�j

2�ej
; (91)
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with j 6= i the following condition must be veri�ed:

VUFB�3(Q = Q̂) > Vreal min(Q = MS) ; (92)

where Vreal min is given by eq.(10), Q̂ � Max(g2jej; �topjH2j; g2jH2j; g2jLij;MS)

with jej=
r

j�j

�ej
jH2j and jLij

2=�
4m2

Li

g02+g2
2

+(jH2j
2+jej2), �ej is an e-type Yukawa cou-

pling and

VUFB�3 = (m2
2 � �2 +m2

Li
)jH2j

2 +
j�j

�ej
(m2

Lj
+m2

ej
+m2

Li
)jH2j �

2m4
Li

g02 + g22
: (93)

If jH2j does not satisfy eq.(91), the constraint is still given in the form (92), but

with

VUFB�3 = (m2
2��2)jH2j

2+
j�j

�ej
(m2

Lj
+m2

ej
)jH2j+

1

8
(g02+ g22)

"
jH2j

2 +
j�j

�ej
jH2j

#2
:

(94)

From (92), (93), (94), it is clear that the larger �ej the more restrictive the

constraint becomes. Consequently, the optimum choice of the e{type slepton

should be the third generation one, i.e. ej = stau.

It is interesting to mention that the previous constraint (92) with the following

replacements

e! d ; �ej ! �dj ; Lj ! Qj ; (95)

must also be imposed. Now i may be equal to j (the optimum choice is dj =

sbottom) and Q̂ � Max (g2jH2j; �topjH2j; g3jdj; �uj jdj; g2jLij; MS). However,

the optimum condition is the �rst one with the sleptons (note e.g. that the second

term in eq.(93) is proportional to the slepton masses and thus smaller) and will

represent, as we will see in sect.6, the strongest one of all the UFB and CCB

constraints in the parameter space of the MSSM.

5.2 CCB constraints

These constraints arise from the existence of charge and color breaking (CCB) minima

in the potential deeper than the realistic minimum. As was explained in subsect.4.1 and

Appendix, the most dangerous, i.e. the deepest, CCB directions in the MSSM potential

involve only one particular trilinear soft term of one generation. Then, for each trilinear

soft term we will write below the three possible (optimized) types of constraints that

emerge. Following the notation of the previous section, they are named CCB-1,2,3.

�uQuH2uR

The following constraints must be evaluated at the scale Q̂ � Max
�
MS; g3

Au
4�u

; �t
Au
4�u

�
.

CCB-1

1. If m2
2 � �2 +m2

Li
> 0 and 3m2

Li
� (m2

Qu
+m2

u) + 2(m2
2 � �2) > 0, then the

optimized CCB-1 bound is

jAuj
2
� 3

h
m2

2 � �2 +m2
Qu

+m2
u

i
(96)
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2. If m2
2 � �2 +m2

Li
> 0 and 3m2

Li
� (m2

Qu
+m2

u) + 2(m2
2 � �2) < 0, then the

optimized CCB-1 bound is

jAuj
2
�

�
1 +

2

�2

� h
m2

2 � �2 + (m2
Qu

+m2
u)�

2 +m2
Li
(1 � �2)

i
(97)

with �2 =

s
2(m2

Li
+m2

2
��2)

m2

Qu
+m2

u�m
2

Li

:

3. If m2
2 � �2 +m2

Li
< 0, then the CCB-1 bound is automatically violated. In

fact the minimization of the potential in this case gives �2 ! 0, and we

are exactly led to the UFB-3 direction shown above, which represents the

correct analysis in this instance.

Let us mention that the bound (96) seldom represents the optimized bound, as

long as the condition for this (see above eq.(96)) will not normally be satis�ed.

Hence, eq.(97) will usually represent the (optimized) CCB-1 bound.

Finally, in the very unlikely case that 3(m2
Li
+m2

ej
)+(m2

Qu
+m2

u)�2(m
2
2��

2) < 0,

which only can take place in (very strange) non-universal cases, then the CCB-1

bound would be given by

jAuj
2
�

�
1 +

2

�2

� h
m2

2 � �2 + (m2
Qu

+m2
u)�

2 + (m2
Li
+m2

ej
)(�2 � 1)

i
(98)

with �2 =

s
2(m2

2
��2�m2

Li
�m2

ej
)

m2

Qu
+m2

u+m
2

Li
+m2

ej

.

CCB-2

This second constraint applies whenever sign(Au) = �sign(B). The general form

of the CCB-2 constraint is

(jAuj+ j�j)
2
�

�
1 +

2

�2

�
[m2

2 + (m2
Qu

+m2
u)�

2 +m2
1

2

+ m2
Li
(1� �2 � 2)� 2jm2

3j ] (99)

which should be handled in the following way:

1. Scan  in the range 0 �  � 1

2. For each value of  the optimum value of �2, i.e. the one that minimizes

the right hand side of (99), is in principle given by

�4ext =
2
h
m2

2 +m2
1

2 +m2
Li
(1� 2)� 2jm2

3j
i

m2
Qu

+m2
u �m2

Li

(100)

Under the assumption of universality the denominator of (100) is always

positive. On the other hand, the numerator should also be positive, other-

wise the optimum value of � is �! 0 and we are exactly led to the UFB-2

direction explained above.

3. If �2ext < 1 � 2, then �2ext is the optimum value of �2 to be substituted in

(99).
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4. If �2ext > 1� 2 and tan� <
� 3, then the m2

Li
(1��2 � 2) term in (99) must

be replaced by (m2
Li
+m2

ej
)(�2 + 2 � 1). The new optimum value of �ext

would be in principle given by

�04ext =
2
h
m2

2 +m2
1

2
� (m2

Li
+m2

ej
)(1 � 2)� 2jm3j

2
i

m2
Qu

+m2
u +m2

Li
+m2

ej

(101)

If �02ext > 1 � 2, then �02ext is the optimum value of �2 to be substituted

in (99) together with the previous replacement. If �02ext < 1 � 2, then the

optimum value of �2 is simply �2 = 1� 2, which should be substituted in

(99).

5. If �2ext > 1 � 2 and tan� > 3, then the optimum value of �2 is simply

�2 = 1 � 2, which should be substituted in (99).

CCB-3

This bound is the equivalent to the CCB-2 one, but when sign(Au) = sign(B).

It has exactly the same form as CCB-2 but ipping the sign of one of the three

terms fjAuj; j�j;�2jm
2
3jg in (99). Notice that, due to the form of (99) ipping

the sign of jAuj or the sign of j�j leads to the same result. Therefore, there are

only two choices to examine: the �rst one writing (jAuj � j�j)
2
in the left hand

side of (99), the second one writing +2jm2
3j in the right hand side of (99) and

hence in those of (100) and (101).

�cQcH2cR

The CCB constraints associated with this coupling have exactly the same form as

those for the �uQuH2uR coupling, i.e. the CCB-1 { CCB-3 bounds, with the obvious

replacement u! c (this is also valid for the scale Q̂). Now, there is no constraint on

tan � and, therefore, possibility 4 in CCB-2,3 can be applied for any value of tan � and

possibility 5 should not be taken into account.

�dQuH1dR, �sQcH1sR, �bQtH1bR

Now the scale is given by: Q̂d;s � Max
�
MS ; g3

Ad;s
4�d;s

�
; Q̂b �Max

�
MS ; g3

Ab
4�b

; �t
Ab
4�b

�
.

The CCB-1 bounds, eqs.(96,97,98), remain the same with the following replace-

ments

m1 $ m2 ;

m2
Li

$ (m2
Li
+m2

ej
) ;

u ! d; s or b : (102)

For the bottom coupling the CCB-1 bound is only valid if tan� <
� 4.

Concerning the CCB-2,3 bounds, they remain the same with the previous (102)

substitutions. Moreover, for the estimation of Q̂d;s we have to include �t
Ad;s
4�d;s

among

the various quantities within the parenthesis above. Now, there is no constraint on

tan � and therefore possibility 4 in CCB-2,3 can be applied for any value of tan �,

disregarding possibility 5.
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�eLeH1eR, ��L�H1�R, ��L�H1�R

The scale is given by: Q̂e;�;� �Max
�
MS ; g2

Ae;�;�
4�e;�;�

�
.

The CCB bounds remain the same with the following replacements

m1 $ m2 ; m2
Li
! (m2

L0
i
+m2

e0
j
) ;

u ! e; � or � ; (m2
Li
+m2

ej
)! m2

L0
i
;

Q ! L : (103)

where L0
i, e

0
Rj

are two sleptons of a di�erent generation than the trilinear coupling

under consideration. When both extra sleptons appear in the bounds, the associated

Yukawa coupling, say �0l, must be much smaller than the Yukawa coupling of the

trilinear coupling under consideration, say �l. Obviously this condition can always be

satis�ed except when the coupling under consideration is of the �rst generation (i.e.

the electron one). In that case �2 = 1 � 2.

Here there is no constraint on tan � and therefore possibility 4 in CCB-2,3 can

be applied for any value of tan� and possibility 5 should not be taken into account.

Moreover, for the estimation of Q̂e;�;� if we are considering the CCB-2,3 bounds we

have to include �t
Ae;�;�
4�e;�;�

among the various quantities within the parenthesis above.

Under the assumption of universality it is easy to see that the CCB-1 bound will

only take place in the possibility 1 [see condition above eq.(96)], while the CCB-2,

CCB-3 bounds will occur in the possibility 4 [note that the denominator of eq.(100)

goes to zero].

�tQtH2tR

The CCB-1 bound does not apply to the top case. Moreover, since �t = O(1) it is

not true that a negative minimum associated to the top trilinear coupling is neces-

sarily much deeper than the realistic minimum, thus destabilizing the standard vac-

uum, as was the case of the previous couplings. Therefore, rather than the absence

of a negative minimum, we must demand that the possible CCB minimum satis�es

VCCB min > Vreal min.

When sign(At) = �sign(B) (i.e. CCB-2), the potential is given by

V = �2tF
0(�)�4jH2j

4
� 2�tÂ

0()�2jH2j
3 + m̂02(�; )jH2j

2
�

2m4
Li

g02 + g22
; (104)

with

F 0(�) = 1 +
2

�2
+

f 0

�4
; f 0 = 0 ;

Â0() = jAtj+ j�j ;

m̂02(�; ) = m2
2 + (m2

Qt
+m2

t )�
2 +m2

1
2 +m2

Li
(1� �2 � 2)� 2jm2

3j: (105)

This should be handled in the following way:

1. Scan  in the range 0 �  � 1
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2. For each value of  the optimum values of �2, H2 i.e. the ones that minimize the

right hand side of (104), are given by

�2ext =
Â0()

�tjH2jext
� 1 �

m2
Qt

+m2
t �m2

Li

2�2t jH2j
2
ext

; (106)

jH2jext =
3Â0()

4�t�
2
extF

0(�ext)

8<
:1 +

vuut1 �
8m̂02(�ext; )F 0(�ext)

9Â02()

9=
; : (107)

For each value of  the coupled equations (106), (107) can be solved, e.g. by a

numerical method. Then, the consistency of the procedure requires

�2ext > 0; jH2jext > 0; 1� 2 � �2ext �
4m2

Li

(g02 + g22)jH2j
2
ext

> 0 : (108)

If (108) is ful�lled, then the corresponding value of the potential at the minimum

is given by

VCCB min = �
1

2
�2extjH2j

2
ext

 
�tÂ

0()jH2jext �
m̂02(�ext; )

�2ext

!
�

2m4
Li

g02 + g22
: (109)

Consequently, the CCB bound has the form

VCCB min(Q = Q̂) > Vreal min(Q = MS) ; (110)

where VCCB min and Vreal min are given by eqs.(109) and (10) respectively; the value

of the scale MS was explained in UFB-1 above and Q̂ � Max
�
MS; g3

At
4�t

; �t
At
4�t

�
.

3. If (108) is not ful�lled, then the potential is given by

V = �2tF
0(�; )�4jH2j

4
� 2�tÂ

0()�2jH2j
3 + m̂02(�; )jH2j

2 ; (111)

The optimum values of �, H2 are now given by

�2ext =
8�2t

g02 + g22 + 8�2t

"
Â0()

�tjH2jext
� 1�

m2
Qt

+m2
t

2�2t jH2j
2
ext

+
g02 + g22
8�2t

(1� 2)

#
(112)

jH2jext =
3Â0()

4�t�
2
extF

0(�ext; )

8<
:1 +

vuut1 �
8m̂02(�ext; )F 0(�ext; )

9Â02()

9=
; ; (113)

with

F 0(�; ) = 1 +
2

�2
+

f 0

�4
;

f 0 =
g02 + g22
8�2t

�
1 � �2 � 2

�2
;

m̂02(�; ) = m2
2 +

�
m2

Qt
+m2

t

�
�2 +m2

1
2
� 2jm2

3j : (114)
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Consistency now requires

�2ext > 0; jH2jext > 0 : (115)

Otherwise there is no CCB minimum for the particular value of  being scanned.

If (115) is satis�ed, then the value of the potential at the minimum is given by

VCCB min = �
1

2
�2extjH2j

2
ext

 
Â0()�tjH2jext �

m̂02(�ext; )

�2ext

!
: (116)

and the CCB bound takes again the form

VCCB min(Q = Q̂) > Vreal min(Q = MS) : (117)

When sign(At) = sign(B) (i.e. CCB-3) the analysis is exactly the same but, as

usual, one of the three terms proportional to jAtj; j�j; jm
2
3j in eqs.(105), (114) must

ip its sign.

Let us �nally note that if tan � is large (tan� >
� 15), then �b = O(1) and the analysis

of this subsection is also the correct one for the bottom, performing the substitutions

H1 $ H2 ; m2
Li
! (m2

Li
+m2

ej
) ;

m1 $ m2 ; t! b : (118)

6 Constraints on the parameter space

In the previous sections, a complete analysis of all the potentially dangerous unbounded

from below (UFB) and charge and color breaking (CCB) directions has been carried

out. In particular, the analytical form of the constraints obtained on the parameter

space of the MSSM has been summarized in sect.5. Now, we will analyze numerically

those constraints. We will see that they are very important and, in fact, there are

extensive regions in the parameter space which are forbidden.

Our analysis will be quite general in the sense that we will consider the whole pa-

rameter space of the MSSM,m,M , A, B, �, with the only assumption of universality11.

Actually, universality of the soft SUSY-breaking terms at MX is a desirable property

not only to reduce the number of independent parameters, but also for phenomenolog-

ical reasons, particularly to avoid avour-changing neutral currents (see, e.g. ref.[16]).

As discussed in sect.2, the requirement of correct electroweak breaking �xes one of

the �ve independent parameters of the MSSM, say �, so we are left with only four

parameters (m, M , A, B). Although we will perform the numerical analysis on this

space, it is worth noticing that particularly interesting values of B can be obtained

from Supergravity (SUGRA). In this sense we will �rst consider two values of B as

guiding examples to get an idea of how strong the di�erent constraints are and then

we will vary B in order to obtain the most general results. Hence, let us �rst justify,

theoretically and phenomenologically, the two speci�c values of B.

The particular values of the soft terms depend on the type of Supergravity theory

from which the MSSM derives and, in general, on the mechanism of SUSY-breaking.

11Let us remark, however, that the constraints found in previous sections are general and they could

also be applied for the non-universal case.
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But, in fact, is still possible to learn things about soft terms without knowing the details

of SUSY-breaking [17]. Let us consider the simple case12 of canonical kinetic terms for

hidden and observable matter �elds (i.e. a K�ahler potential K =
P

� j��j
2). Then,

irrespective of the SUSY-breaking mechanism, the scalar masses are automatically

universal. Furthermore, if the observable part of the superpotential W is assumed to

be as in eq.(3), � being an initial parameter, then the B term and the universal A

terms are automatically generated and they are related to each other (assuming that

Yukawa couplings and � are hidden �eld independent [17]) by the well known relation

[18]

B = A�m : (119)

Finally, if the gauge kinetic function is the same for the di�erent gauge groups of the

theory fa = f (where a is associated with SU(3), SU(2)L and U(1)Y ), the gaugino

masses are also universal. This SUGRA theory is attractive for its simplicity and for

the natural explanation that it o�ers to the universality of the soft terms. However,

this scenario has a serious drawback. It is well known that, in order to get appropriate

SU(2)L � U(1)Y breaking, the � parameter has to be of the same order of magnitude

(MW ) as the soft SUSY-breaking terms discussed above. This is in general unexpected

since the � term is a SUSY term whereas the soft terms are originated after SUSY-

breaking. In principle, the natural scale of � would be the Planck mass. The unnatural

smalleness of the � parameter is the so-called � problem. We will briey explain

here three interesting scenarios considered in SUGRA in order to solve the problem,

illustrating them in the case of canonical kinetic terms:

(a) In ref.[19] was pointed out that the presence of a non-renormalizable term in

the superpotential, �WH1H2, characterized by the coupling �, yields dynamically a

� parameter when the hidden sector part of W acquires a VEV, namely � = m3=2�,

where m3=2 is the gravitino mass. The fact that � is of the electroweak scale order is

a consequence of our assumption of a correct SUSY-breaking scale m3=2 = O(MW ).

Now, with this solution to the � problem, the B parameter can be straightforwardly

evaluated. The simple result (in the case of � independent of the hidden �elds [17]) is

B = 2m : (120)

For this mechanism to work, the �H1H2 term in eq.(3) must be initially absent (other-

wise the natural scale for � would be the Planck mass), a fact that remarkably enough,

is automatically guaranteed in the framework of Superstring theory as we will see

below.

(b) In refs.[20, 19] it was shown that if a term, ZH1H2 + h:c:, characterized by

the coupling Z is present in the K�ahler potential, an e�ective low-energy B term is

naturally generated. In the case of Z independent of the hidden �elds, this mechanism

for solving the � problem is equivalent [19] to the previous one (a) and therefore the

value of B is again given by eq.(120). Now, the size of � is � = m3=2Z.

(c) In ref.[21] the observation was made that in the framework of any SUSY-GUT,

starting again with � = 0, an e�ective � term is generated by the integration of the

heavy degrees of freedom. The prediction for B is once more given by eq.(120).

The solutions discussed here in order to solve the � problem are naturally present

in Superstring theory. In ref.[19] was �rst remarked that the �H1H2 term is naturally

12We will assume from now on a vanishing cosmological constant.
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absent as already mentioned above. The reason is that in SUGRA theories coming from

Superstring theory mass terms for light �elds are forbidden in the superpotential. Then

a realistic example where non-perturbative SUSY-breaking mechanisms like gaugino-

squark condensation induce superpotentials of the type (a) was given. In ref.[22] the

same kind of superpotential was obtained using pure gaugino condensation in the

context of orbifold models. The alternative mechanism (b) in which there is an extra

term in the K�ahler potential originating a �-term is also naturally present in some large

classes of four-dimensional Superstrings [23, 24, 22]. In Superstring theory, neither the

kinetic terms are in general canonical nor the couplings (Yukawas, �, Z) and the mass

term (�) are independent of hidden �elds. However, it is still possible to obtain (the

phenomenologically desirable) universal soft terms in the so-called dilaton-dominated

limit [23, 25]. This limit is not only interesting because of that, but also because it is

quite model independent (i.e. for any compacti�cation scheme the results for the soft

terms are the same). It is also remarkable, that in this limit once again the value of B

for the two mechanisms (a), (b) coincides [17] with that of eq.(120). If, alternatively,

we just assume that a small (� MW ) dilaton-independent mass � is present in the

superpotential, then the result for B is now given [25] by eq.(119) as in the case of

canonical kinetic terms.

From the above analysis, it is clear that eqs.(119,120) give us two values of B very

interesting from the theoretical and phenomenological point of view. Thus, we will

consider, for the moment, in our numerical study of the UFB and CCB constraints both

possibilities. In fact, the value of � is also �xed once we choose a particular mechanism

for solving the � problem, e.g. mechanisms (a), (b) (see above). However, this value

still depends on the couplings � and Z which are in general model dependent13, so

we prefer to eliminate � in terms of the other parameters by imposing appropriate

symmetry-breaking at the weak scale as mentioned above. Let us now turn to the

numerical results.

In Fig.1 we have presented in detail the case B = A � m with m = 100 GeV, to

get an idea of how strong the di�erent constraints are, plotting the excluded regions

in the remaining parameter space (A=m, M=m). It is worth noticing here that even

before imposing CCB and UFB constraints, the parameter space is strongly restricted

by the experiment. As already mentioned in sect.2, not for all the parameter space it

is possible to choose the boundary condition of �top so that the experimental mass of

the top is reproduced, since the RG infrared �xed point of �top puts an upper bound

on Mtop, namely Mtop
<
� 197 sin � GeV [9], where tan � = v2=v1. In this way, the upper

and lower darked regions are forbidden because Mphys
top = 174 GeV cannot be reached.

Furthermore, the small central darked region is also forbidden because there is no value

of � capable of producing the correct electroweak breaking.

Fig.1a shows the region excluded by the \traditional" CCB bounds of the type of

eq.(5), evaluated at an appropriate scale (see subsect.4.5). For a point in the parameter

space to be excluded we have also demanded that the corresponding CCB minimum

is deeper than the realistic one (this is especially relevant for the bounds coming from

the top trilinear term). Clearly, the \traditional" bounds, when correctly evaluated,

turn out to be very weak. In fact, only the leptonic (circles) and the d{type (dia-

13For an analysis of the MSSM from Superstring theory taking into account a particular value of Z

coming from orbifold compacti�cations, and therefore a �xed value of �, see ref.[26].
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monds) terms do restrict, very modestly, the parameter space. Let us recall here that

it has been a common (incorrect) practice in the literature to evaluate these traditional

bounds at all the scales between MX and MW , thus obtaining very important (and of

course overestimated) restrictions in the parameter space. Fig.1b shows the region

excluded by our \improved" CCB constraints obtained in sect.4 and summarized in

sect.5. Comparing Figs.1a and 1b it is clear that the excluded region becomes dra-

matically increased. Notice also that all the trilinear couplings (except the top one in

this case) give restrictions, producing areas constrained by di�erent types of bounds

simultaneously. The restrictions coming from the UFB constraints, obtained in sect.3

and summarized in sect.5, are shown in Fig.1c. By far, the most restrictive bound is

the UFB{3 one (small �lled squares). Indeed, the UFB{3 constraint is the strongest

one of all the UFB and CCB constraints, excluding extensive areas of the parameter

space, as is illustrated in the �gure. In our opinion, this is a most remarkable result.

Finally, in Fig.1d we summarize all the constraints plotting also the excluded region

due to the (conservative) experimental bounds on SUSY particle masses (�lled dia-

monds) of eq.(16). More precisely, this forbidden area comes from too small masses for

the gluino, lightest chargino, lightest neutralino, left sbottom, and left and right u; c

squarks. The allowed region left at the end of the day (white) is quite small.

Figs.2a, 2b, 2c give, in a summarized way, the same analysis as that of Fig.1, but

for three di�erent values of m (m = 100 GeV, m = 300 GeV, m = 500 GeV). For

the plots with m bigger than 100 GeV the gluino, lightest stop, lightest chargino and

lightest neutralino are responsible for the excluded region due to experimental bounds

on masses. The ants indicate regions which are excluded by negative squared mass

eigenvalues, in this case the lightest stop. The �gures show a clear trend in the sense

that the larger the value of m, the less restrictive the constraints become. This is

mainly due to the e�ect of the UFB-3 constraint (note the almost exact m{invariance

of the CCB bounds). Anyway, extensive areas in the parameter space are forbidden in

all cases.

The same conclusions are obtained for the other (theoretically and phenomenolog-

ically well-motivated) value of B, B = 2m. The results in this scenario are shown in

Fig.3, where the whole darked region is forbidden because M
phys
top = 174 GeV cannot be

reached. Unlike the Fig.2, now in some cases the left sbottom may also get a negative

squared mass eigenvalue.

Finally, in Figs.4a, 4b we generalize the previous analyses by varying the value of

B for di�erent values of m, namely m = 100 GeV, m = 300 GeV. The �nal allowed

regions from all types of bounds in the parameter space of the MSSM are shown. Both

�gures exhibit a similar trend. For a particular value of m, the larger the value of B

the smaller the allowed region becomes. More precisely, the maximum allowed value

of B is B = 2:5m for m = 100 GeV and B = 3:5m for m = 300 GeV. This fact

comes mainly from the enhancement of the forbidden areas by the UFB-3 constraint

and the requirement of M
phys
top = 174 GeV. Both facts are due to the decreasing of tan �

as B grows. Then higher top Yukawa couplings are needed in order to reproduce the

experimental top mass. On the one hand, this cannot be always accomplished due to

the infrared �xed point limit on the top mass. On the other hand, the larger the top

Yukawa coupling, the stronger the UFB-3 bound becomes. For negative values of B

the corresponding �gures can easily be deduced from the previous ones, taking into

that they are invariant under the transformation B;A;M ! �B;�A;�M .
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From the various �gures it is clear that the CCB and UFB constraints put important

bounds not only on the value of A, but also on the values of B and M , which is an

interesting novel fact.

7 Conclusions

Although the possible existence of dangerous charge and color breaking minima in

the supersymmetric standard model has been known since the early 80's, a complete

study of this crucial issue was still lacking. This was due to two reasons: First, the

complexity of the SUSY scalar potential, V , caused that only particular directions in

the �eld-space were considered, thus obtaining necessary but not su�cient conditions

to avoid dangerous charge and color breaking minima. Second, the radiative corrections

to V were not normally included in a proper way.

In the present paper we have carried out a complete analysis of all the potentially

dangerous directions in the �eld-space of the MSSM, obtaining the corresponding con-

straints on the parameter space. These are completely general and can be applied to

the non-universal case. The constraints turn out to be very important and, in fact,

there are extensive regions in the parameter space which are forbidden, increasing the

predictive power of the theory.

The constraints can be clasi�ed in two types. First, the ones associated with the

existence of charge and color breaking (CCB) minima in the potential deeper than the

realistic minimum. Second, the constraints associated with directions in the �eld-space

along which the potential becomes unbounded from below (UFB). It is worth mention-

ing here that the unboundedness is only true at tree-level since radiative corrections

eventually raise the potential for large enough values of the �elds, but still these minima

can be deeper than the realistic one and thus dangerous.

We have performed a complete analysis of both types of directions obtaining new

and very restrictive bounds, expressed in an analytic way, that represent a set of neces-

sary and su�cient constraints. They are summarized in sect.5. For certain values of the

initial parameters the CCB constraints \degenerate" into the UFB constraints since

the minima become unbounded from below directions. In this sense, the CCB con-

straints comprise the UFB bounds, which can be considered as special (but extremely

important) limits of the former.

We have also taken into account the radiative corrections to V in a proper way.

To this respect, let us remember that, usually, the scalar potential is considered at

tree-level, improved by one-loop RGEs, so that all the parameters appearing in it are

running with the renormalization scale, Q. Then it is often demanded that the CCB

and UFB constraints are satis�ed at any scale between MX and MZ . However, this

is not correct since the tree-level scalar potential is strongly Q-dependent and the

one-loop radiative corrections to it are crucial to make the potential stable against

variations of the scale. Using the scale independence of V , instead of minimizing the

complete one-loop potential, which would be an impossible task, we have demanded

that the previous (tree-level-like) bounds are satis�ed at the renormalization scale,

Q, at which the one-loop correction to the potential is essentially negligible. This

simpli�es enormously the analysis, producing equivalent results. We have also given

explicit expressions of the appropriate scale to evaluate the di�erent types of bounds.
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The usual lack in the literature of an optimum scale to evaluate the constraints

implies that their restrictive power has normally been overestimated. E.g., the \tradi-

tional" CCB bounds (see eq.(5)) when (incorrectly) analyzed at MX are very strong.

However, we have seen that when correctly evaluated, they turn out to be very weak

(see Fig.1a). The new CCB constraints obtained here are much more restrictive and,

in fact, the excluded region becomes dramatically increased (see Fig.1b). On the other

hand, the restrictions coming from the new UFB constraints are by far the most im-

portant ones, excluding extensive areas of the parameter space (see e.g. Fig.1c).

We have performed a numerical analysis of how our UFB and CCB constraints

put restrictions on the whole parameter space of the MSSM. As already mentioned

they are very strong producing important bounds not only on the value of A (soft

trilinear parameter), but also on the values of B (soft bilinear parameter) and M

(gaugino masses). This is a new and interesting feature. This analysis is summarized

in Figs.2{4.

Finally, let us mention that all the constraints that has been obtained here come

from the requirement that the standard vacuum is the global minimum of the theory.

Although the possibility of living in a metastable vacuum with a lifetime larger than

the present age of the Universe [2] does not seem specially attractive, it cannot be

excluded. Since the constraints on the parameter space found in this paper are very

strong, this dynamical question deserves further analysis [27].
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Appendix

In subsect.4.1 we have enumerated �ve general properties concerning charge and color

breaking (CCB) minima in the MSSM. Properties 1, 3, 5 remained to be proved, which

is the aim of this appendix.

Let us however �rst notice that some of the properties (in particular the 1 and 3

ones) can be intuitively understood by a simple consideration. Suppose we consider a

region in the �eld-space where only one trilinear scalar term is non-negligible. Denoting

by � the typical size of the relevant VEVs at a CCB minimum, we can schematically

write the relevant terms in the potential as

V � Nm2�2 � 2A��3 +N 0�2�4 + D� terms ; (121)

where N;N 0 = O(1) (typically N;N 0
� 3), m;A � MS (i.e. the scale of SUSY

breaking) and � is the Yukawa coupling (note that with a convenient choice of the �eld

phases, the trilinear scalar term can always be made negative as in (121)). Ignoring

for the moment the D{terms, it is clear that V will only be negative in the range

Nm2

2A�
< � <

2A

N 0�
; (122)

which implies

� �
MS

�
: (123)

Now, if �� 1, then ��MS . In that case it is clear that the D{terms must be essen-

tially cancelled (i.e. property 3), otherwise they would contribute a positive amount of

order g2j�j4 that would dominate the potential (121). Furthermore, from (123), it fol-

lows that two trilinear scalar terms with di�erent Yukawa couplings cannot e�ciently

"cooperate" to improve the CCB bounds (i.e. property 1): the potential can only be

negative in two separate regions in the �eld-space given by eq.(123) applied to each

coupling. In any of these regions, the presence of the extra trilinear term plus the

associated mass and F terms can only yield a positive contribution to the potential.

An explicite example of this argument can be found below eq.(37)

Property 1

As we have already mentioned, according to this property the most dangerous CCB

directions in the MSSM potential involve only one particular trilinear soft term.

Since it is not possible to get an analytical formulation of the general CCB minima

with all the �elds and couplings in the game, the proof of the previous statement can

only come from an exhaustive analysis of all the ways in which two or more di�erent

trilinear scalar terms could cooperate to improve the CCB bounds. Next we consider

all the cases in a separate way14.

�QH2u+ �0Q0H2u
0 ; �� �0

14We simplify somewhat the notation (in an obvious way) to go more straightforwardly through the

arguments. Likewise, in some speci�c points we will use the assumption of universality to simplify

the arguments, but these can easily be extended with slight modi�cations to more general cases.

36



Here we consider the simultaneous presence in the Lagrangian of two di�erent couplings

of the u type and the corresponding terms in the scalar potential from the associated

D{terms, F{terms and soft terms. According to the notation of the heading, the pair

of quarks fu; u0g may represent fu; cg, fu; tg or fc; tg. It is convenient for our analysis

to roughly divide the �eld-space in the three following regions

a) Qu� Q0u0

b) Qu � Q0u0

c) Qu� Q0u0

where Q;u;Q0; u0 > 0 without loss of generality. Let us examine the CCB issue in each

zone separately, taking for simplicity Q = u, Q0 = u0.

a) All terms in the potential involving Q and/or u are negligible, so the only signi�cant

term is the �0 one. Therefore the (a) area is irrelevant for property 1.

b) In this region A�QH2u � A0�0Q0H2u
0, so, again, property 1 cannot be disproved

here. We can check however that the region (b) is anyway irrelevant for CCB

bounds. The only terms in V where the presence of Q;u is relevant are

(m2
Q +m2

u)Q
2 + D � terms ; (124)

where we have used Q = u.

In the case where � = �u, �
0 = �c, it happens that, very accurately, m2

Q = m2
Q0,

m2
u = m2

u0. ThereforeQ
2 occurs in V only through the combination Q̂2

� Q2+Q02.

Along any direction with Q2=Q02 =const. the relevant terms in the potential can

be writen as

�2A0�̂H2Q̂
2+(m2

Q+m
2
u)Q̂

2+�̂2Q̂4+2�̂2H2
2 Q̂

2(1+
Q2

Q02
)+D� terms+� � � ; (125)

where �̂ = �0Q02=Q̂2 and the D{terms are a function of Q̂2. Therefore everything

occurs as if there were a single coupling �̂Q̂H2û, except for the additional (posi-

tive) term proportional to Q2

Q02 . Recalling now that in the case of a coupling � 1,

the general CCB bound does not depend on the value of the coupling itself15,

it is clear that the optimum direction arises for Q2

Q02 = 0. Thus the (b) region is

irrelevant.

When �0 = �t, the previous argument is not valid, but it is still true from (124)

that the same role of Q can be played by a slepton L with exactly the same

VEV along the �L direction. Then the D{terms are exactly the same but, since

m2
L < m2

Q+m2
u, it is clear that the potential becomes deeper. Consequently, the

(b) region does never correspond to an improved CCB bound.

15For more details, see sect.4, e.g. eqs.(50), (51).
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c) In this region the e�ect of Q0, u0 in the mass terms is negligible and it is convenient to

look at the potential \from the point of view" of �QH2u as the relevant coupling.

The relevant terms of the potential are

V =
�
m2

Q +m2
u

�
Q2

� 2AH2 (�Qu+ �0Q0u0) +m2
2H

2
2 +m2

1H
2
1 � 2m2

3H1H2

+ j�H1 + �Qu+ �0Q0u0j
2
+ 2 j�H2Qj

2
+ 2 j�0H2Q

0
j
2

+
1

8
(g2 + g02)

���H2
2 �H2

1 �Q2
���2 ; (126)

where for simplicity we have taken A = A0.

For �0Q0
� �Q, or smaller, it is clear that the only non-negligible term involving

Q0 is 2j�0H2Q
0
j
2, which is positive. Thus, a value of Q0 of this order can never be

useful to make the potential deeper.

For greater values of Q0, in particular �0Q0u0 � �Qu, there appear new relevant

terms in the potential involving Q0; u0, as can be seen from (126). In this case the

potential (126) can be reformulated as if it was derived from a single coupling

�̂QH2u with �̂ � �(1 + �0Q02=�Q2), except for the terms

2 j�H2Qj
2
+ 2 j�0H2Q

0
j
2
= 2

����̂H2Q
���2 1 + �0Q02

�Q2

�0

��
1 + �0Q02

�Q2

�2 ; (127)

which appear instead of the 2
����̂H2Q

���2 term. Since �0 � �, it is clear that

as long as �0Q02

�Q2
�

�0

�
(which, by de�nition, always occurs in the (c) region),

(127) is bigger than 2
����̂H2Q

���2, so the CCB bounds obtained in this region are

less stringent than those obtained by consideration of a unique coupling �QH2u

(recall that for small couplings the form of the CCB bound does not depend on

the value of the coupling itself).

�QH1d+ �0Q0H1d
0 ; �� �0

This case can be analyzed along similar lines than the previous heading, with analogous

results.

�QH1d+ �0Q0H2u
0 ; �� �0

Again, we divide the �eld-space in the three regions

a) Qd� Q0u0

b) Qd � Q0u0

c) Qd� Q0u0

with Q; d;Q0; u0 > 0 .

a) Similarly to the previous heading, this case is irrelevant.
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b) In this region the trilinear scalar term �AQH1d is negligible, so property 1 cannot

be disproved. Let us note anyway that the only relevant terms involving the

Q; d �elds are the mass terms and the D{terms. Hence their role can be more

pro�tably played by sleptons, which have lower masses. More precisely, a single

slepton L (taken along the �L direction) will be needed if H2
2�Q

02
�H2

1 > 0, while

two sleptons, L (along lL), lR, will be needed if H
2
2 �Q02

�H2
1 < 0. (Furthermore

the leptonic coupling �l must be �l � �0, so a choice that always works is to take

the slepton from the �rst generation.)

c) Analogously to the previous heading, this region is more conveniently seen \from

the point of view" of �QH1d as the relevant coupling. The only relevant terms

in the potential involving Q0; u0 are

�2A0�0Q02H2 +
����H1 + �0Q02

���2 + 2 j�0H2Q
0
j
2

(128)

(recall we are taking Q0 = u0). Clearly, if Q0
6= 0, only the �rst two terms can

be useful to make the potential deeper. The �rst term will only be signi�cant if

H2 � H1, but then the (positive) third term dominates the potential. Therefore

we conclude that Q0
6= 0 can only be relevant for the CCB bounds if H2 = 0 or

negligible. Then, the Q0 value can be optimally adjusted so that

����H1 + �0Q02
���2 = 0 : (129)

Of course, this possibility has been considered in the analysis of the CCB bounds

(see CCB{1 bound in the main text). In any case, note that, since H2 = 0, the

only relevant trilinear scalar term is �QH2d, in agreement with property 1.

�QH1d+ �0Q0H2u
0 ; �� �0

This case is completely analogous to the previous one interchanging Q$ Q0, d $ u0,

H1 $ H2, �$ �0,

�LH1l + other couplings

The analysis is completely similar to that of �QH1d + other couplings in the three

previous headings. The only exception is that when �LH1l corresponds to the electron

coupling there is no slepton, say L0, with smaller Yukawa coupling, to play with (the

existence of such an slepton is used when analyzing the (b) region above). However,

this is irrelevant in practice since

� The leptonic couplings of �; � turn out to give more stringent CCB restrictions

than the electron one, as can be seen in the text (see sect.6).

� For all the leptonic couplings the direction with L0
6= 0 is never the most danger-

ous one.

Two couplings with � � �0

This case represents the only possible exception to property 1.
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A paradigmatic example would be to consider the bottom and tau couplings

�bQH1b+ ��LH1� : (130)

In the extreme (and non{realistic) case that �b = �� , m
2
Q = m2

L, m
2
b = m2

� , Ab = A�

(at the correct scale), it is easy to see that for a given value of j�j2 � jQj2 + jLj2 the

potential is independent of the particular values of jQj2; jLj2. In practice, however, the

previous equalities do not hold, in particular, typically m2
Q > m2

L, m
2
b > m2

� . Hence, it

becomes pro�table to use just one of the two VEVs, typically jLj2, as it is con�rmed

by the numerical results (see sect.6). Consequently, in this case property 1 holds.

Other examples can arise for particular values of tan �. For example

�uQH2u+ �lLH1l : (131)

can have �u � �l for particular choices of (u; l) and particular values of tan � (e.g. for

(u; l) = (c; � ) and tan � � 2).

Playing just with the �elds appearing in (131), it is possible to arrive to an optimized

CCB condition  
jAuj+ jAlj

�l

�u

2l
�2

+ j�j + j�j
�l

�u

2l
�2

!2

<

2
41 + 2

�2
+

 
�l

�u

!2  �
l

�

�4
+ 2

22l
�4

!35
�

h
m2

2 + (m2
Q +m2

u)�
2 +m2

1
2 + (m2

L +m2
l )

2
l � 2jm2

3j
i

(132)

where  = H2=H1, �
2 = Q2=H2

2 , 
2
l = L2=H2

2 and 1 � 2 � 2l � �2 = 0. Actually,

eq.(132) holds if sign(A)={sign(B). In the opposite case we have to change the sign

either of the / jm2
3j or of the / j�j terms in the previous equation. We have not

used this type of condition in the examination of the CCB bounds of the MSSM (see

sections 4{6).

Property 3

In the general property 3 of subsect.4.1 it was stated that if the trilinear term under

consideration has a Yukawa coupling �2 � 1, which occurs in all the cases except

for the top, then the corresponding deepest CCB direction occurs for vanishing (or

negligible) D{terms. Next, we prove this property taking for de�niteness the trilinear

coupling

�QH2u (133)

as the relevant coupling and considering (a priori) non-vanishing VEVs for the �elds

H2,Q (taken along the uL direction), u, H1, parameterized as

jQj = �jH2j; juj = �jH2j; jH1j = jH2j (134)

(a non-vanishing VEV for a slepton could be also included in the analysis). For sim-

plicity we will focuss on the SU(2)�U(1) D{terms, so we will assume for the moment

� = � (135)
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and thus Q = u. Then the corresponding scalar potential has the form

V =
�
m2

Q +m2
u

�
jQj2 +m2

2jH2j
2 +m2

1jH1j
2
�

�
m2

3H1H2 + h:c:
�

+ 2 j�H2Qj
2
+
����Q2

���2
+

�
�AQ2H2 + ��Q2H�

1 + h:c:
�

+
1

8
(g2 + g02)

h
jH2j

2
� jH1j

2
� jQj2

i2
: (136)

The strategy of our proof is to suppose that the values of the �elds are in such a way

that D{terms 6= 0, and then show that no CCB minimum can arise in this situation.

The �rst consideration is that if D{terms 6= 0, then, necessarily, all the terms in-

volving � are irrelevant. For the quartic F{terms (second line of (136)), this is obvious

since �2 � (g2+ g02). The trilinear terms (third line of (136)) can only be competitive

with the D{terms if the generic value of the involved �elds (say �) is j�j <�
�
g2
MS (recall

that A;� = O(MS )). In that case, both the trilinear and the D{terms are negligible

compared to the mass terms. Let us also note that if the values of the �elds are tuned

in such a way that the D{terms are non-vanishing but small enough to be comparable

with the rest of the terms, then it is always favoured to slightly modify those values so

that D{terms! 0 (or negligible), since this is accomplished with almost no cost in the

rest of the terms. Consequently, in any case we can write the scalar potential as

V = jH2j
2m̂2(�; ) + jH2j

41

8
(g2 + g02)

h
1 � �2 � 2

i2
(137)

with

m̂2(�; ) = m2
2 +

�
m2

Q +m2
u

�
�2 +m2

1
2
� 2m2

3 : (138)

If �;  are such that m̂2(�; ) < 0, then V has a minimum in the H2 direction at

jH2j
2
min =

�4m̂2(�; )

(g2 + g02) [1 � �2 � 2]
2 ; (139)

Vmin(�; ) =
�2jm̂(�; )j4

(g2 + g02) [1 � �2 � 2]
2 : (140)

It is important to stress that this is not necessarily a CCB minimum (in fact it will

never be) since we have still to minimize with respect to �;  and we could well �nd

� = 0 in that process. Actually, the realistic minimum, Vreal min (see eq.(10)), is a

particular case of (140), more precisely

Vreal min = Vmin(� = 0;  = real) = �

n
[ (m2

1 +m2
2)
2
� 4jm3j

4 ]
1=2
�m2

1 +m2
2

o2
2 (g2 + g02)

(141)

with

(real)
�1

= tan � =
m2

1 +m2
2

2m2
3

+

vuut m2
1 +m2

2

2m2
3

!2

� 1 : (142)

Of course, one has to demand

Vmin(�; ) > Vreal min ; (143)
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well understood that (143) does not necessarily mean that we are comparing the relative

depth of two minima of V , since Vmin(�; ) may not correspond to an actual minimum.

A necessary condition for (143) to be satis�ed is that

@Vmin(�; )

@�2

�����
�=0;=

real

> 0 : (144)

This condition was worked out in ref.[4], but without including  in the game (the

authors took  = 0). Now, it is clear that (144) corresponds to the requirement that

Vreal min is an actual minimum in the whole �eld-space (not just in H1;H2). As it was

mentioned in sect.2, this is simply equivalent to demand all the scalar mass eigenvalues

to be positive. If this is demanded from the beginning (as it should be), eq.(144) is a

redundant condition. In fact (144) has the explicite form

m2
Q +m2

u >
1

2

����h (m2
1 +m2

2)
2
� 4jm3j

4
i1=2

�m2
1 +m2

2

���� ; (145)

which is equivalent to require that the sum of the two mass eigenvales of the u{mass

matrix is positive. For our later convenience, let us note that (145) implies

m2
Q +m2

u +m2
2 > 0 : (146)

In order to study the relevance of (143) we must consider theminimum of Vmin(�; )

in the �;  variables. It is interesting to check that � = 0;  = real does correspond

to a minimum (the realistic one). However, there might be other minima. A necessary

condition to have a minimum is m̂2(�; ) < 0, which implies

m2
2 +m2

1
2
� 2m2

3 < 0 : (147)

Using m2
1+m

2
2 > 2m2

3 (eq.(13)) and m
2
1 > m2

2, it is clear that (147) can only be satis�ed

in a certain range of values of :

0 � inf �  � sup < 1 : (148)

Now we can write the minimization condition for �

@Vmin(�; )

@�2
=

�4m̂2(�; )

[1� �2 � 2]
3

h
m2

2 +m2
1

2
� 2m2

3 + (m2
Q +m2

u)(1� 2)
i

=
�4m̂2(�; )

[1� �2 � 2]
3 m̂

2(�2 = 1� 2; ) ; (149)

where the quantity m̂2(�2 = 1 � 2; ) satis�es

m̂2(�2 = 1 � 2;  = 0) > 0

m̂2(�2 = 1 � 2;  = 1) > 0 : (150)

To analyze (149) we can distinguish two cases

a) m2
1 < m2

Q +m2
u
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In this case (which is the usual one) m̂2(�2 = 1 � 2; ) is a monotonically

decreasing function in the range 0 �  � 1, so from (150) it follows that

m̂2(�2 = 1� 2; ) > 0 (151)

in all this range. Then, since m̂2(�2 > 1� 2; ) > m̂2(�2 = 1� 2; ), it is clear

from the condition m̂2(�; ) < 0 that (149) is only meaningful in a certain range

0 � �2 � �2sup < 1 � 2 : (152)

Hence, it follows from (151), (149) that @Vmin(�;)

@�2
> 0 in all the range (152), and

therefore the optimum value of � is always � = 0. Consequently, there are no

CCB minima.

b) m2
1 > m2

Q +m2
u

This is a rather unusual, but still possible case. Now m̂2(�2 = 1 � 2; ) is

not monotonically decreasing in the range 0 �  � 1, but it has a minimum.

However, if

m2
2 +m2

Q +m2
u �

m4
3

m2
1 �m2

Q �m2
u

> 0 ; (153)

it is still true that m̂2(�2 = 1 � 2; ) > 0 in all the 0 �  � 1 range. Then, the

argument follows exactly as in the previous case (a). If (153) is not satis�ed, then

there is a segment of  values where m̂2(�2 = 1� 2; ) < 0 (only the part of the

segment overlaping (148) is relevant). For these values of  it is clear from (149)

that
@Vmin(�;)

@�2
< 0 for �2 < 1 � 2 and

@Vmin(�;)

@�2
> 0 for �2 > 1 � 2. Therefore

there is a CCB minimum at �2 = 1 � 2, but this is precisely the point where

D{terms= 0. Note also from (140) that at this point V ! �1, but this is not

right since if D{terms= 0, we cannot neglect the terms involving � any more.

Finally, had we included the SU(3) D{term in the game (relaxing eq.(135)), it is

easy to convince yourself that the whole argument would have followed analogously.

Property 5

The last property concerns the optimum choice of the phases of the �elds involved in

the scalar potential when analyzing CCB minima. Taking again �QH2u as the relevant

coupling, the relevant terms in the superpotential are

W = �ij�H2iQju+ ��ijH1iH2j ; (154)

The corresponding terms in the scalar potential without a de�nite phase, say Vph, are

Vph = (A��ijH2iQju+ h:c:)

+ (B��ijH1iH2j + h:c:) � (���H�
1iQiu+ h:c:) (155)

We will take �; �;A;B as real numbers for simplicity and also because their phases

are quite constrained by limits on the electric dipole moment of the neutron since

they give large one-loop contributions to this CP-violating quantity. The following

43



results are independent of the signs of �; �, as well as on the form in which the two

SU(2) contractions in (154) are de�ned. This comes from the fact that all these signs

can be re-absorved in phase rede�nitions of the �elds involved. Along the direction

Ho
1 ;H

o
2 ; uL; uR 6= 0 at which the CCB minima appear (see text), Vph can be re-writen

as

Vph = �2 jA�H2Quj sign(A) sign(�) cos(�+ �)

+ 2 jB�H1H2j sign(B) sign(�) cos(�+ )

� 2 j��H�
1Quj sign(�) sign(�) cos(� � ) ; (156)

where � = phase(Ho
2 ), � = phase(uLuR),  = phase(Ho

1 ).

Of course, if H1 = 0, the only non-vanishing term in (156) is the one proportional

to A, which, for exploring minima of the potential, can always be writen as

Vph = �2 jA�H2Quj : (157)

If H1 6= 0 and sign(A) = � sign(B), it is straightforward to check from (156)

that �; �;  can be taken so that the three terms become negative, which of course

corresponds to the deepest direction in Vph, i.e.

Vph = �2 jA�H2Quj � 2 jB�H1H2j � 2 j��H�
1Quj : (158)

If H1 6= 0 and sign(A) = sign(B), the previous direction (158) is no longer available.

Then Vph can be expressed as

Vph = C1 cos('1) + C2 cos('2) + C3 cos('1 � '2) ; (159)

where Ci > 0 are the three absolute values of eq.(156), ordered for convenience so that

C1 � C2 � C3 ; (160)

and the 'i phases are certain independent combinations of �; �;  and the signs of

A;B; �; �. For �xed values of Ci, the minimization in the '1; '2 variables gives the

following result:

� If

C2

C3

� 1 +
C2

C1

(161)

(this is by far the most usual case), then the minimum in the 'i space lies on

'1 = �; '2 = � ; (162)

i.e. in this case Vph can simply be expressed as

Vph = �C1 �C2 + C3 : (163)
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� If

C2

C3

� 1 +
C2

C1

; (164)

then the optimum choice of phases is given by

�����sin'2

sin'1

����� =
C1

C2����� sin'1

sin('1 � '2)

����� =
C3

C1

; (165)

which substituted in (159) gives

Vph = �
1

2
C1C2C3

 
1

C2
1

+
1

C2
2

+
1

C2
3

!
: (166)

Clearly, (164) is muchmore unlikely than (161) and harder to handle (compare eqs.(162,163)

with eqs.(165, 166). Furthermore, in the rare cases corresponding to (164), eqs.(162,163)

still provide a very good approximation16 to the actual minimum of Vph. In conse-

quence, we have always used eq.(163) as the optimum direction of Vph when sign(A) =

sign(B).

Finally, let us point out that all the previous results about the choice of phases translate

unchanged to the cases in which the relevant coupling is of the �QH1d or �LH1e types.

16The worst situation occurs for C1 = C2 = C3, where the actual minimum of Vph is �3C1=2, while

eq.(163) gives �C1.
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Figure Captions

Fig. 1 Excluded regions in the parameter space of the Minimal Supersymmetric Stan-

dard Model, with B = A�m, m = 100 GeV and M
phys
top = 174 GeV. The central

darked region is excluded because there is no solution for � capable of producing

the correct electroweak breaking. The upper and lower darked regions are ex-

cluded because it is not possible to reproduce the experimental mass of the top. a)

The circles and diamonds indicate regions excluded by the \traditional" Charge

and Color Breaking constraints associated with the e and d-type trilinear terms

respectively. b) The same as (a) but using our \improved" Charge and Color

Breaking constraints. The triangles correspond to the u-type trilinear terms. c)

The crosses, squares and small �lled squares indicate regions excluded by the

Unbounded From Below-1,2,3 constraints respectively. d) The previous excluded

regions together with the one arising from the experimental lower bounds on

supersymmetric particle masses (�lled diamonds).

Fig. 2 Excluded regions in the parameter space of the Minimal Supersymmetric Stan-

dard Model, with B = A�m and M
phys
top = 174 GeV, for di�erent values of m.

The central darked region is excluded because there is no solution for � capable

of producing the correct electroweak breaking. The upper and lower darked re-

gions are excluded because it is not possible to reproduce the experimental mass

of the top. The small �lled squares indicate regions excluded by our Unbounded

From Below constraints. The circles indicate regions excluded by our \improved"

Charge and Color Breaking constraints. The �lled diamonds indicate regions ex-

cluded by the experimental lower bounds on supersymmetric particle masses.

The ants indicate regions excluded by negative scalar squared mass eigenvalues.

Fig. 3 The same as Fig. 2 but with B = 2m. Now, the whole darked region is excluded

because it is not possible to reproduce the experimental mass of the top.

Fig. 4 Contours of allowed regions in the parameter space of the Minimal Supersym-

metric Standard Model, with Mphys
top = 174 GeV and di�erent values of B and m,

by the whole set of constraints.
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