343 research outputs found

    Solving the mu problem with a heavy Higgs boson

    Full text link
    We discuss the generation of the mu-term in a class of supersymmetric models characterized by a low energy effective superpotential containing a term lambda S H_1 H_2 with a large coupling lambda~2. These models generically predict a lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to be compatible with the unification of gauge couplings. Here we discuss a specific example where the superpotential has no dimensionful parameters and we point out the relation between the generated mu-term and the mass of the lightest Higgs boson. We discuss the fine-tuning of the model and we find that the generation of a phenomenologically viable mu-term fits very well with a heavy lightest Higgs boson and a low degree of fine-tuning. We discuss experimental constraints from collider direct searches, precision data, thermal relic dark matter abundance, and WIMP searches finding that the most natural region of the parameter space is still allowed by current experiments. We analyse bounds on the masses of the superpartners coming from Naturalness arguments and discuss the main signatures of the model for the LHC and future WIMP searches.Comment: Extended discussion of the LHC phenomenology, as published on JHEP plus an addendum on the existence of further extremal points of the potential. 47 pages, 16 figure

    Fine Tuning in General Gauge Mediation

    Get PDF
    We study the fine-tuning problem in the context of general gauge mediation. Numerical analyses toward for relaxing fine-tuning are presented. We analyse the problem in typical three cases of the messenger scale, that is, GUT (2×10162\times10^{16} GeV), intermediate (101010^{10} GeV), and relatively low energy (10610^6 GeV) scales. In each messenger scale, the parameter space reducing the degree of tuning as around 10% is found. Certain ratios among gluino mass, wino mass and soft scalar masses are favorable. It is shown that the favorable region becomes narrow as the messenger scale becomes lower, and tachyonic initial conditions of stop masses at the messenger scale are favored to relax the fine-tuning problem for the relatively low energy messenger scale. Our spectra would also be important from the viewpoint of the Ό−B\mu-B problem.Comment: 22 pages, 16 figures, comment adde
    • 

    corecore