343 research outputs found

    Copper-Dependent Trafficking of the Ctr4-Ctr5 Copper Transporting Complex

    Get PDF
    In Schizosaccharomyces pombe, copper uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Copper-induced differential subcellular localization may play a critical role with respect to fine tuning the number of Ctr4 and Ctr5 molecules at the cell surface.We have developed a bimolecular fluorescence complementation (BiFC) assay to analyze protein-protein interactions in vivo in S. pombe. The assay is based on the observation that N- and C-terminal subfragments of the Venus fluorescent protein can reconstitute a functional fluorophore only when they are brought into tight contact. Wild-type copies of the ctr4(+) and ctr5(+) genes were inserted downstream of and in-frame with the nonfluorescent C-terminal (VC) and N-terminal (VN) coding fragments of Venus, respectively. Co-expression of Ctr4-VC and Ctr5-VN fusion proteins allowed their detection at the plasma membrane of copper-limited cells. Similarly, cells co-expressing Ctr4-VN and Ctr4-VC in the presence of Ctr5-Myc(12) displayed a fluorescence signal at the plasma membrane. In contrast, Ctr5-VN and Ctr5-VC co-expressed in the presence of Ctr4-Flag(2) failed to be visualized at the plasma membrane, suggesting a requirement for a combination of two Ctr4 molecules with one Ctr5 molecule. We found that plasma membrane-located Ctr4-VC-Ctr5-VN fluorescent complexes were internalized when the cells were exposed to high levels of copper. The copper-induced internalization of Ctr4-VC-Ctr5-VN complexes was not dependent on de novo protein synthesis. When cells were transferred back from high to low copper levels, there was reappearance of the BiFC fluorescent signal at the plasma membrane.These findings reveal a copper-dependent internalization and recycling of the heteromeric Ctr4-Ctr5 complex as a function of copper availability

    Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    Get PDF
    Background: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. Methodology/Principal Findings: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. Conclusions/Significance: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our result

    Cuf2 Is a Novel Meiosis-Specific Regulatory Factor of Meiosis Maturation

    Get PDF
    Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors

    Environmental-dependent proline accumulation in plants living on gypsum soils

    Full text link
    [EN] Biosynthesis of proline¿or other compatible solutes¿is a conserved response of all organisms to different abiotic stress conditions leading to cellular dehydration. However, the biological relevance of this reaction for plant stress tolerance mechanisms remains largely unknown, since there are very few available data on proline levels in stress-tolerant plants under natural conditions. The aim of this work was to establish the relationship between proline levels and different environmental stress factors in plants living on gypsum soils. During the 2-year study (2009¿2010), soil parameters and climatic data were monitored, and proline contents were determined, in six successive samplings, in ten taxa present in selected experimental plots, three in a gypsum area and one in a semiarid zone, both located in the province of Valencia, in south-east Spain. Mean proline values varied significantly between species; however, seasonal variations within species were in many cases even wider, with the most extreme differences registered in Helianthemum syriacum (almost 30 lmol g-1 of DW in summer 2009, as compared to ca. 0.5 in spring, in one of the plots of the gypsum zone). Higher proline contents in plants were generally observed under lower soil humidity conditions, especially in the 2009 summer sampling preceded by a severe drought period. Our results clearly show a positive correlation between the degree of environmental stress and the proline level in most of the taxa included in this study, supporting a functional role of proline in stress tolerance mechanisms of plants adapted to gypsum. However, the main trigger of proline biosynthesis in this type of habitat, as in arid or semiarid zones, is water deficit, while the component of ¿salt stress¿ due to the presence of gypsum in the soil only plays a secondary role.This work has been supported by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund.Boscaiu, M.; Bautista Carrascosa, I.; Lidón Cerezuela, AL.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, M.; Mayoral García-Berlanga, O.... (2013). Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiologiae Plantarum. 35:2193-2204. https://doi.org/10.1007/s11738-013-1256-3S2193220435Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. J Plant Physiol 156:612–616Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant, Cell Environ 5:287–292Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología y Fisiología Vegetal 9:611–622Caballero I, Olano JM, Loidi J, Escudero A (2003) Seed bank structure along a semi-arid gypsum gradient in Central Spain. J Arid Environ 55:287–299Escudero A, Carnes LF, Pérez García F (1997) Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J Arid Environ 36:487–497Escudero A, Somolinos RC, Olano JM, Rubio A (1999) Factors controlling the establishment of Helianthemum squamatum, an endemic gypsophite of semi-arid Spain. J Ecol 87:290–302FAO (1990) Management of gypsiferous soils. FAO Soils Bull 62Ferriol M, Pérez I, Merle H, Boira H (2006) Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284:205–216Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39(2):9–17Grigore MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19Hare PD, Cress WA, Van Standen J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553Keeney DR, Nelson DW (1982) Nitrogen inorganic forms. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 643–698Knudsen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 225–246Kuo S (1996) Phosphorus. In: Spark DL (ed) Methods of soil analysis: chemical methods, part 3. Soil Science Society of America, Madison, pp 869–919Martens H, Maes T (1989) Multivariate calibration. Wiley, New York, pp 97–108Martínez-Duro E, Ferrandis P, Escudero A, Luzuriaga AL, Herranz JM (2010) Secondary old-field succession in an ecosystem with restrictive soils: does time from abandonment matter? Appl Veg Sci 13:234–248Meyer SE (1986) The ecology of gypsophile endemism in the eastern Mojave desert. Ecology 67:1303–1313Meyer SE, García-Moya E (1989) Plant community patterns and soil moisture regime in gypsum grasslands of north central Mexico. J Arid Environ 16:147–155Meyer SE, García-Moya E, Lagunes-Espinoza LC (1992) Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. J Veg Sci 3:429–438Moruno F, Soriano P, Vicente O, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 39(1):18–23Mota JF, Sánchez Gómez P, Merlo Calvente ME, Catalán Rodríguez P, Laguna Lumbreras E, de la Cruz Rot M, Navarro Reyes FB, Marchal Gallardo F, Bartolomé Esteban C, Martínez Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, Martínez Hernández F, Garrido Becerra JA, Pérez García FJ (2009) Aproximación a la checklist de los gipsófitos ibéricos. Anales de Biología 31:71–80Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, part 2: chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343Parsons RF (1977) Gypsophily in plants—a review. Am Midl Nat 96:1–20Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311Rivas-Martínez S, Rivas-Sáenz S (2009) Worldwide Bioclimatic Classification System. Phytosociological Research Center, Complutense University of Madrid, Spain. http://www.globalbioclimatics.org/ . Accessed 15 Nov 2012Romão RL, Escudero A (2005) Gypsum physical soil crusts and the existence of gypsophytes in semi-arid central Spain. Plant Ecol 181:127–137Rubio A, Escudero A (2000) Small-scale spatial soil-plant relationship in semi-arid gypsum environment. Plant Soil 220:139–150Ruíz JM, López-Cantarero I, Rivero RM, Romero L (2003) Sulphur phytoaccumulation in plant species characteristic of gypsiferous soils. Int J Phytorem 5:203–210Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97Szabados L, Kovács H, Zilberstein A, Bouchereau A (2011) Plants in extreme environments: importance of protective compounds in stress tolerance. Adv Bot Res 57:105–150Tecator Application Note (1984) AN 5226: Determination of ammonium in 2 M KCl soil extracts by FIAstar 5000. AN 5201: Determination of the sum of nitrate and nitrite in water by FIAstar 5000. (Adapted for 2 M KCl soil extracts)Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153Verheye WH, Boyadgiev TG (1997) Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use Manage 13:97–103Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–283

    Development of paediatric quality of inpatient care indicators for low-income countries - A Delphi study

    Get PDF
    BACKGROUND: Indicators of quality of care for children in hospitals in low-income countries have been proposed, but information on their perceived validity and acceptability is lacking. METHODS: Potential indicators representing structural and process aspects of care for six common conditions were selected from existing, largely qualitative WHO assessment tools and guidelines. We employed the Delphi technique, which combines expert opinion and existing scientific information, to assess their perceived validity and acceptability. Panels of experts, one representing an international panel and one a national (Kenyan) panel, were asked to rate the indicators over 3 rounds and 2 rounds respectively according to a variety of attributes. RESULTS: Based on a pre-specified consensus criteria most of the indicators presented to the experts were accepted: 112/137(82%) and 94/133(71%) for the international and local panels respectively. For the other indicators there was no consensus; none were rejected. Most indicators were rated highly on link to outcomes, reliability, relevance, actionability and priority but rated more poorly on feasibility of data collection under routine conditions. There was moderate to substantial agreement between the two panels of experts. CONCLUSIONS: This Delphi study provided evidence for the perceived usefulness of most of a set of measures of quality of hospital care for children proposed for use in low-income countries. However, both international and local experts expressed concerns that data for many process-based indicators may not currently be available. The feasibility of widespread quality assessment and responsiveness of indicators to intervention should be examined as part of continued efforts to improve approaches to informative hospital quality assessment

    Has Selection for Improved Agronomic Traits Made Reed Canarygrass Invasive?

    Get PDF
    Plant breeders have played an essential role in improving agricultural crops, and their efforts will be critical to meet the increasing demand for cellulosic bioenergy feedstocks. However, a major concern is the potential development of novel invasive species that result from breeders' efforts to improve agronomic traits in a crop. We use reed canarygrass as a case study to evaluate the potential of plant breeding to give rise to invasive species. Reed canarygrass has been improved by breeders for use as a forage crop, but it is unclear whether breeding efforts have given rise to more vigorous populations of the species. We evaluated cultivars, European wild, and North American invader populations in upland and wetland environments to identify differences in vigor between the groups of populations. While cultivars were among the most vigorous populations in an agricultural environment (upland soils with nitrogen addition), there were no differences in above- or below-ground production between any populations in wetland environments. These results suggest that breeding has only marginally increased vigor in upland environments and that these gains are not maintained in wetland environments. Breeding focuses on selection for improvements of a specific target population of environments, and stability across a wide range of environments has proved elusive for even the most intensively bred crops. We conclude that breeding efforts are not responsible for wetland invasion by reed canarygrass and offer guidelines that will help reduce the possibility of breeding programs releasing cultivars that will become invasive

    Stiffness in total knee arthroplasty

    Get PDF
    Stiffness is a relatively uncommon complication after total knee arthroplasty. It has been defined as a painful limitation in the range of movement (ROM). Its pathogenesis is still unclear even if some risk factors have been identified. Patient-related conditions may be difficult to treat. Preoperative ROM is the most important risk factor, but an association with diabetes, reflex sympathetic dystrophy, and general pathologies such as juvenile rheumatoid arthritis and ankylosing spondylitis has been demonstrated. Moreover, previous surgery may be an additional cause of an ROM limitation. Postoperative factors include infections, arthrofibrosis, heterotrophic ossifications, and incorrect rehabilitation protocol. Infections represent a challenging problem for the orthopaedic surgeon, and treatment may require long periods of antibiotics administration. However, it is widely accepted that an aggressive rehabilitation protocol is mandatory for a proper ROM recovery and to avoid the onset of arthrofibrosis and heterotrophic ossifications. Finally, surgery-related factors represent the most common cause of stiffness; they include errors in soft-tissue balancing, component malpositioning, and incorrect component sizing. Although closed manipulation, arthroscopic and open arthrolysis have been proposed, they may lead to unpredictable results and incomplete ROM recovery. Revision surgery must be proposed in the case of well-documented surgical errors. These operations are technically demanding and may be associated with high risk of complications; therefore they should be accurately planned and properly performed

    Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592. Additional support was provided by Arctic Long Term Ecological Research program, funded by National Science Foundation, Division of Environmental Biology
    corecore