96 research outputs found

    Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    Get PDF
    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals

    Highly Parallel Translation of DNA Sequences into Small Molecules

    Get PDF
    A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 1010 to 1015 distinct molecules for the discovery of nanomolar-affinity ligands to proteins.[1], [2], [3], [4], [5] Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands.[6], [7] Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons.[8] Creating a collection of 1010 to 1015 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments

    Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Get PDF
    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier–Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings

    Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    Get PDF
    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 mu M dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.open4

    DNA Aptamers against the Lup an 1 Food Allergen

    Get PDF
    Using in vitro selection, high affinity DNA aptamers to the food allergen Lup an 1, ß-conglutin, were selected from a pool of DNA, 93 bases in length, containing a randomised sequence of 49 bases. ß-conglutin was purified from lupin flour and chemically crosslinked to carboxylated magnetic beads. Peptide mass fingerprinting was used to confirm the presence of the ß-conglutin. Single stranded DNA was generated from the randomised pool using T7 Gene 6 Exonuclease and was subsequently incubated with the magnetic beads and the captured DNA was released and amplified prior to a further round of Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Evolution was monitored using enzyme linked oligonucleotide assay and surface plasmon resonance. Once a plateau in evolution was reached, the isolated DNA sequences were cloned and sequenced. The consensus motif was identified via alignment of the sequences and the affinities of these sequences for immobilised ß-conglutin were determined using surface plasmon resonance. The selected aptamer was demonstrated to be highly specific, showing no cross-reactivity with other flour ingredients or with other conglutin fractions of lupin. The secondary structures of the selected aptamers were predicted using m-fold. Finally, the functionality of the selected aptamers was demonstrated using a competitive assay for the quantitative detection of ß-conglutin. . Future work will focus on structure elucidation and truncation of the selected sequences to generate a smaller aptamer for application to the analysis of the Lup an 1 allergen in foodstuffs

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore