161 research outputs found

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Full text link
    Einstein realised that the fluctuations of a Brownian particle can be used to ascertain properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics, and leading to applications from energy harvesting to medical imaging. Here we use optically levitated nanospheres that are heated to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers new opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and a new means for testing non-equilibrium thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques

    Visualizing size-dependent deformation mechanism transition in Sn

    Get PDF
    Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450 nm down to 130 nm, diffusional deformation replaces displacive plasticity as the dominant deformation mechanism at room temperature. At the same time, the strength-size relationship changed from “smaller is stronger” to “smaller is much weaker”. The effective surface diffusivity calculated based on our experimental data matches well with that reported in literature for boundary diffusion. The observed change in the deformation mode arises from the sample size-dependent competition between the Hall-Petch-like strengthening of displacive processes and Coble diffusion softening processes. Our findings have important implications for the stability and reliability of nanoscale devices such as metallic nanogaps.National Science Foundation (U.S.) (CMMI-0728069)National Science Foundation (U.S.) (DMR-1008104)National Science Foundation (U.S.) (DMR-1120901)United States. Air Force Office of Scientific Research (FA9550-08-1-0325

    The contribution of microlensing surveys to the distance scale

    Full text link
    In the early nineties several teams started large scale systematic surveys of the Magellanic Clouds and the Galactic Bulge to search for microlensing effects. As a by product, these groups have created enormous time-series databases of photometric measurements of stars with a temporal sampling duration and accuracy which are unprecedented. They provide the opportunity to test the accuracy of primary distance indicators, such as Cepheids, RRLyrae stars, the detached eclipsing binaries, or the luminosity of the red clump. We will review the contribution of the microlensing surveys to the understanding of the physics of the primary distance indicators, recent differential studies and direct distance determinations to the Magellanic Clouds and the Galactic Bulge.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages; uses Kluwer's crckapb.sty LaTeX style file, enclose

    Single-shot compressed ultrafast photography at one hundred billion frames per second

    Get PDF
    The capture of transient scenes at high imaging speed has been long sought by photographers, with early examples being the well known recording in 1878 of a horse in motion and the 1887 photograph of a supersonic bullet. However, not until the late twentieth century were breakthroughs achieved in demonstrating ultrahigh-speed imaging (more than 10^5 frames per second). In particular, the introduction of electronic imaging sensors based on the charge-coupled device (CCD) or complementary metal–oxide–semiconductor (CMOS) technology revolutionized high-speed photography, enabling acquisition rates of up to 10^7 frames per second. Despite these sensors’ widespread impact, further increasing frame rates using CCD or CMOS technology is fundamentally limited by their on-chip storage and electronic readout speed. Here we demonstrate a two-dimensional dynamic imaging technique, compressed ultrafast photography (CUP), which can capture non-repetitive time-evolving events at up to 10^(11) frames per second. Compared with existing ultrafast imaging techniques, CUP has the prominent advantage of measuring an x–y–t (x, y, spatial coordinates; t, time) scene with a single camera snapshot, thereby allowing observation of transient events with temporal resolution as tens of picoseconds. Furthermore, akin to traditional photography, CUP is receive-only, and so does not need the specialized active illumination required by other single-shot ultrafast imagers. As a result, CUP can image a variety of luminescent—such as fluorescent or bioluminescent—objects. Using CUP, we visualize four fundamental physical phenomena with single laser shots only: laser pulse reflection and refraction, photon racing in two media, and faster-than-light propagation of non-information (that is, motion that appears faster than the speed of light but cannot convey information). Given CUP’s capability, we expect it to find widespread applications in both fundamental and applied sciences, including biomedical research

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Neural hypernetwork approach for pulmonary embolism diagnosis

    Get PDF
    Background Hypernetworks are based on topological simplicial complexes and generalize the concept of two-body relation to many-body relation. Furthermore, Hypernetworks provide a significant generalization of network theory, enabling the integration of relational structure, logic and analytic dynamics. A pulmonary embolism is a blockage of the main artery of the lung or one of its branches, frequently fatal. Results Our study uses data on 28 diagnostic features of 1427 people considered to be at risk of pulmonary embolism enrolled in the Department of Internal and Subintensive Medicine of an Italian National Hospital “Ospedali Riuniti di Ancona”. Patients arrived in the department after a first screening executed by the emergency room. The resulting neural hypernetwork correctly recognized 94 % of those developing pulmonary embolism. This is better than previous results obtained with other methods (statistical selection of features, partial least squares regression, topological data analysis in a metric space). Conclusion In this work we successfully derived a new integrative approach for the analysis of partial and incomplete datasets that is based on Q-analysis with machine learning. The new approach, called Neural Hypernetwork, has been applied to a case study of pulmonary embolism diagnosis. The novelty of this method is that it does not use clinical parameters extracted by imaging analysis

    Analytical model for the calculation of lateral velocity distributions in potential cross-sections

    Full text link
    [EN] The hydraulic modeling of water depth and flow velocities in open channel flows that were fitted by power-law cross-section stand out for their versatility, allowing their use in numerous practical applications, both in natural and artificial channels. The determination of the hydraulic variables of depth and average velocity has been widely studied in potential cross-sections; however, the variation seen in these variables along the cross-section was not found in the literature. Knowledge of this variation allows the development of studies (e.g. to know the approximate damage in different areas of the cross-section, to analyse sediment transport, or other applications in river hydraulics). This paper presents a methodology which allows calculation of the hydraulic variables in any area of a power-law cross-section. The methodology is applied to symmetrical cross-sections, comparing its generated results with the obtained values by different computational hydraulic codes, which are thoroughly accepted by scientific community, such as CES, HEC-RAS and IBER. The obtained predictions of hydraulic parameters (using the explicit formulation described in this research) present very low errors when compared with results of other models, with great computational cost. These errors reach a root mean square error (RMSE) of 0.13 and 0.05 in the determination of velocities' lateral distribution and the ratio between velocity and average velocity. These values indicate a very successful validation for the analysed symmetrical sections.[ES] La modelización hidráulica de calados y velocidades de flujo, en cauces con secciones que admiten una representación de tipo potencial, se destaca por su versatilidad, permitiendo su utilización en numerosas aplicaciones prácticas tanto en canales naturales como artificiales. El cálculo de las variables hidráulicas (calado y velocidad media) ha sido ampliamente estudiado para este tipo de secciones. Sin embargo, en la literatura técnica no se han encontrado estudios que muestren la variación de estas magnitudes a lo largo de la sección transversal. El conocimiento de esta variación permite desarrollar estudios (ejemplo: conocer de manera aproximada los daños en diferentes zonas de la sección, analizar el transporte de sedimentos, estudiar los procesos de erosión u otras aplicaciones en hidráulica fluvial). Presentamos una metodología que permite el cálculo de las variables hidráulicas en cualquier zona de una sección tipo potencial. La metodología es aplicada a secciones simétricas, comparando los resultados generados con los obtenidos por diferentes códigos hidráulicos computacionales ampliamente aceptados por la comunidad científica (p-e- CES, HECRAS e IBER). Las predicciones de los parámetros hidráulicos obtenidas (usando la formulación explícita descrita en este artículo) presentan errores muy bajos, en comparación con otros modelos con mayor costo computacional. Estos errores alcanzan un valor promedio para la raíz del error cuadrático medio (RMSE) en el cálculo de la distribución lateral de velocidades de 0.13 y de 0.05, en el cálculo de la relación de velocidades respecto a la velocidad media. Estos valores indican una validación muy satisfactoria para las secciones simétricas analizadas.Sánchez-Romero, F.; Pérez-Sánchez, M.; López Jiménez, PA. (2018). Modelo analítico para el cálculo de distribuciones de velocidad laterales en secciones tipo potencial-ley. RIBAGUA - Revista Iberoamericana del Agua. 5(1):29-47. doi:10.1080/23863781.2018.1442189S29475

    A Non-Lévy Random Walk in Chacma Baboons: What Does It Mean?

    Get PDF
    The Lévy walk is found from amoebas to humans and has been described as the optimal strategy for food research. Recent results, however, have generated controversy about this conclusion since animals also display alternatives to the Lévy walk such as the Brownian walk or mental maps and because movement patterns found in some species only seem to depend on food patches distribution. Here I show that movement patterns of chacma baboons do not follow a Lévy walk but a Brownian process. Moreover this Brownian walk is not the main process responsible for movement patterns of baboons. Findings about their speed and trajectories show that baboons use metal maps and memory to find resources. Thus the Brownian process found in this species appears to be more dependent on the environment or might be an alternative when known food patches are depleted and when animals have to find new resources
    corecore