16 research outputs found

    Clinical update on the use of biomarkers of airway inflammation in the management of asthma

    Get PDF
    Biological markers are already used in the diagnosis and treatment of cardiovascular disease and cancer. Biomarkers have great potential use in the clinic as a noninvasive means to make more accurate diagnoses, monitor disease progression, and create personalized treatment regimes. Asthma is a heterogeneous disease with several different phenotypes, generally triggered by multiple gene-environment interactions. Pulmonary function tests are most often used objectively to confirm the diagnosis. However, airflow obstruction can be variable and thus missed using spirometry. Furthermore, lung function measurements may not reflect the precise underlying pathological processes responsible for different phenotypes. Inhaled corticosteroids and β2-agonists have been the mainstay of asthma therapy for over 30 years, but the heterogeneity of the disease means not all asthmatics respond to the same treatment. High costs and undesired side effects of drugs also drive the need for better targeted treatment of asthma. Biomarkers have the potential to indicate an individual’s disease phenotype and thereby guide clinicians in their decisions regarding treatment. This review focuses on biomarkers of airway inflammation which may help us to identify, monitor, and guide treatment of asthmatics. We discuss biomarkers obtained from multiple physiological sources, including sputum, exhaled gases, exhaled breath condensate, serum, and urine. We discuss the inherent limitations and benefits of using biomarkers in a heterogeneous disease such as asthma. We also discuss how we may modify our study designs to improve the identification and potential use of potential biomarkers in asthma

    Glucocorticoid and Estrogen Receptors Are Reduced in Mitochondria of Lung Epithelial Cells in Asthma

    Get PDF
    Mitochondrial glucocorticoid (mtGR) and estrogen (mtER) receptors participate in the coordination of the cell’s energy requirement and in the mitochondrial oxidative phosphorylation enzyme (OXPHOS) biosynthesis, affecting reactive oxygen species (ROS) generation and induction of apoptosis. Although activation of mtGR and mtER is known to trigger anti-inflammatory signals, little information exists on the presence of these receptors in lung tissue and their role in respiratory physiology and disease. Using a mouse model of allergic airway inflammation disease and applying confocal microscopy, subcellular fractionation, and Western blot analysis we showed mitochondrial localization of GRα and ERβ in lung tissue. Allergic airway inflammation caused reduction in mtGRα, mtERβ, and OXPHOS enzyme biosynthesis in lung cells mitochondria and particularly in bronchial epithelial cells mitochondria, which was accompanied by decrease in lung mitochondrial mass and induction of apoptosis. Confirmation and validation of the reduction of the mitochondrial receptors in lung epithelial cells in human asthma was achieved by analyzing autopsies from fatal asthma cases. The presence of the mitochondrial GRα and ERβ in lung tissue cells and especially their reduction in bronchial epithelial cells during allergic airway inflammation suggests a crucial role of these receptors in the regulation of mitochondrial function in asthma, implicating their involvement in the pathophysiology of the disease

    Bronchoalveolar lavage fluid from preterm infants with chorioamnionitis inhibits alveolar epithelial repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm infants are highly susceptible to lung injury. While both chorioamnionitis and antenatal steroids induce lung maturation, chorioamnionitis is also associated with adverse lung development. We investigated the ability of bronchoalveolar lavage fluid (BALF) from ventilated preterm infants to restore alveolar epithelial integrity after injury <it>in vitro</it>, depending on whether or not they were exposed to chorioamnionitis or antenatal steroids. For this purpose, a translational model for alveolar epithelial repair was developed and characterised.</p> <p>Methods</p> <p>BALF was added to mechanically wounded monolayers of A549 cells. Wound closure was quantified over time and compared between preterm infants (gestational age < 32 wks) exposed or not exposed to chorioamnionitis and antenatal steroids (≥ 1 dose). Furthermore, keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF) were quantified in BALF, and their ability to induce alveolar epithelial repair was evaluated in the model.</p> <p>Results</p> <p>On day 0/1, BALF from infants exposed to antenatal steroids significantly increased epithelial repair (40.3 ± 35.5 vs. -6.3 ± 75.0% above control/mg protein), while chorioamnionitis decreased wound-healing capacity of BALF (-2.9 ± 87.1 vs. 40.2 ± 36.9% above control/mg protein). BALF from patients with chorioamnionitis contained less KGF (11 (0-27) vs. 0 (0-4) pg/ml) and less detectable VEGF (66 vs. 95%) on day 0. BALF levels of VEGF and KGF correlated with its ability to induce wound repair. Moreover, KGF stimulated epithelial repair dose-dependently, although the low levels in BALF suggest KGF is not a major modulator of BALF-induced wound repair. VEGF also stimulated alveolar epithelial repair, an effect that was blocked by addition of soluble VEGF receptor-1 (sVEGFr1/Flt-1). However, BALF-induced wound repair was not significantly affected by addition of sVEGFr1.</p> <p>Conclusion</p> <p>Antenatal steroids improve the ability of BALF derived from preterm infants to stimulate alveolar epithelial repair <it>in vitro</it>. Conversely, chorioamnionitis is associated with decreased wound-healing capacity of BALF. A definite role for KGF and VEGF in either process could not be established. Decreased ability to induce alveolar epithelial repair after injury may contribute to the association between chorioamnionitis and adverse lung development in mechanically ventilated preterm infants.</p

    Exploring Definitions and Predictors of Severe Asthma Clinical Remission Post-Biologic in Adults.

    Get PDF
    RATIONALE: There is no consensus on criteria to include in an asthma remission definition in real-life. Factors associated with achieving remission post-biologic-initiation remain poorly understood. OBJECTIVES: To quantify the proportion of adults with severe asthma achieving multi-domain-defined remission post-biologic-initiation and identify pre-biologic characteristics associated with achieving remission which may be used to predict it. METHODS: This was a longitudinal cohort study using data from 23 countries from the International Severe Asthma Registry. Four asthma outcome domains were assessed in the 1-year pre- and post-biologic-initiation. A priori-defined remission cut-offs were: 0 exacerbations/year, no long-term oral corticosteroid (LTOCS), partly/well-controlled asthma, and percent predicted forced expiratory volume in one second ≥80%. Remission was defined using 2 (exacerbations + LTOCS), 3 (+control or +lung function) and 4 of these domains. The association between pre-biologic characteristics and post-biologic remission was assessed by multivariable analysis. MEASUREMENTS AND MAIN RESULTS: 50.2%, 33.5%, 25.8% and 20.3% of patients met criteria for 2, 3 (+control), 3 (+lung function) and 4-domain-remission, respectively. The odds of achieving 4-domain remission decreased by 15% for every additional 10-years asthma duration (odds ratio: 0.85; 95% CI: 0.73, 1.00). The odds of remission increased in those with fewer exacerbations/year, lower LTOCS daily dose, better control and better lung function pre-biologic-initiation. CONCLUSIONS: One in 5 patients achieved 4-domain remission within 1-year of biologic-initiation. Patients with less severe impairment and shorter asthma duration at initiation had a greater chance of achieving remission post-biologic, indicating that biologic treatment should not be delayed if remission is the goal. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Comparative effectiveness of Anti-IL5 and Anti-IgE biologic classes in patients with severe asthma eligible for both.

    Get PDF
    BACKGROUND: Patients with severe asthma may present with characteristics representing overlapping phenotypes, making them eligible for more than one class of biologic. Our aim was to describe the profile of adult patients with severe asthma eligible for both anti-IgE and anti-IL5/5R and to compare the effectiveness of both classes of treatment in real life. METHODS: This was a prospective cohort study that included adult patients with severe asthma from 22 countries enrolled into the International Severe Asthma registry (ISAR) who were eligible for both anti-IgE and anti-IL5/5R. The effectiveness of anti-IgE and anti-IL5/5R was compared in a 1:1 matched cohort. Exacerbation rate was the primary effectiveness endpoint. Secondary endpoints included long-term-oral corticosteroid (LTOCS) use, asthma-related emergency room (ER) attendance, and hospital admissions. RESULTS: In the matched analysis (n = 350/group), the mean annualized exacerbation rate decreased by 47.1% in the anti-IL5/5R group and 38.7% in the anti-IgE group. Patients treated with anti-IL5/5R were less likely to experience a future exacerbation (adjusted IRR 0.76; 95% CI 0.64, 0.89; p < 0.001) and experienced a greater reduction in mean LTOCS dose than those treated with anti-IgE (37.44% vs. 20.55% reduction; p = 0.023). There was some evidence to suggest that patients treated with anti-IL5/5R experienced fewer asthma-related hospitalizations (IRR 0.64; 95% CI 0.38, 1.08), but not ER visits (IRR 0.94, 95% CI 0.61, 1.43). CONCLUSIONS: In real life, both anti-IgE and anti-IL5/5R improve asthma outcomes in patients eligible for both biologic classes; however, anti-IL5/5R was superior in terms of reducing asthma exacerbations and LTOCS use
    corecore