921 research outputs found

    Measurement of serum 7α-hydroxy-4-cholesten-3-one as a marker of bile acid malabsorption in dogs with chronic diarrhoea: a pilot study.

    Get PDF
    Bile acid malabsorption is a common cause of chronic diarrhoea in people, however it has never previously been investigated in dogs, despite clinical suspicion of its existence. The goal of this study was to assess the feasibility of measuring serum 7α-hydroxy-4-cholesten-3-one (C4) in dogs, as a potential marker of bile acid malabsorption, and to see whether this is related to clinical disease severity or the presence of hypocobalaminaemia. Serum C4 concentration was measured in 20 clinically healthy control dogs and 17 dogs with chronic diarrhoea. Three of the 17 affected dogs (17.6 per cent) had a C4 concentration significantly above the range of clinically healthy dogs; these dogs were all poorly responsive to conventional therapy. These results suggest that bile acid malabsorption may be a clinically relevant disorder in dogs with chronic diarrhoea and serum C4 may be a useful tool to investigate this further.A.C.C. Kent is very grateful to the Alice Noakes Trust for sponsorship of his Senior Clinical Training Scholarship.This is the final version of the article. It first appeared from the BMJ Group via http://dx.doi.org/10.1136/vetreco-2015-00016

    Cryo-EM Structure (4.5-angstrom) of Yeast Kinesin-5-Microtubule Complex Reveals a Distinct Binding Footprint and Mechanism of Drug Resistance

    Get PDF
    Kinesin-5s are microtubule-dependent motors that drive spindle pole separation during mitosis. We used cryo-electron microscopy to determine the 4.5-Å resolution structure of the motor domain of the fission yeast kinesin-5 Cut7 bound to fission yeast microtubules and explored the topology of the motor–microtubule interface and the susceptibility of the complex to drug binding. Despite their non-canonical architecture and mechanochemistry, Schizosaccharomyces pombe microtubules were stabilized by epothilone at the taxane binding pocket. The overall Cut7 footprint on the S. pombe microtubule surface is altered compared to mammalian tubulin microtubules because of their different polymer architectures. However, the core motor–microtubule interaction is tightly conserved, reflected in similar Cut7 ATPase activities on each microtubule type. AMPPNP-bound Cut7 adopts a kinesin-conserved ATP-like conformation including cover neck bundle formation. However, the Cut7 ATPase is not blocked by a mammalian-specific kinesin-5 inhibitor, consistent with the non-conserved sequence and structure of its loop5 insertion

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Guidance for researchers wanting to link NHS data using non-consent approaches: a thematic analysis of feedback from the Health Research Authority Confidentiality Advisory Group

    Get PDF
    Introduction The use of linked data and non-consent methodologies is a rapidly growing area of health research due to the increasing detail, availability and scope of routinely collected electronic health records data. However, gaining the necessary legal and governance approvals to undertake data linkage is a complex process in England. Objectives We reflect on our own experience of establishing lawful basis for data linkage through Section 251 approval, with the intention to build a knowledgebase of practical advice for future applicants. Methods Thematic analysis was conducted on a corpus of Section 251 feedback reports from the NHS Health Research Authority Confidentiality Advisory Group. Results Four themes emerged from the feedback. These were: (a) Patient and Public Involvement, (b)~Establishing Rationale, (c) Data maintenance and contingency, and the need to gain (d) Further Permissions from external authorities prior to full approval. Conclusions Securing Section 251 approval poses ethical, practical and governance challenges. However, through a comprehensive, planned approach Section 251 approval is possible, enabling researchers to unlock the potential of linked data for the purposes of health research

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure
    • …
    corecore