67 research outputs found
CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1
Tumor necrosis factor-α (TNF-α) has important roles in several immunological events by regulating apoptosis and transcriptional activation of cytokine genes. Intracellular signaling mediated by TNF-receptor-type 1 (TNFR1) is constituted by two sequential protein complexes: Complex-I containing the receptor and Complex-II-containing Caspase-8. Protein modifications, particularly ubiquitination, are associated with the regulation of the formation of these complexes. However, the underlying mechanisms remain poorly defined. Here, we identified CLIP-170-related 59 kDa protein (CLIPR-59) as a novel adaptor protein for TNFR1. Experimental reduction of CLIPR-59 levels prevented induction of apoptosis and activation of caspases in the context of TNF-α signaling. CLIPR-59 binds TNFR1 but dissociates in response to TNF-α stimulation. However, CLIPR-59 is also involved in and needed for the formation of Complex-II. Moreover, CLIPR-59 regulates TNF-α-induced ubiquitination of receptor-interacting protein 1 (RIP1) by its association with CYLD, a de-ubiquitinating enzyme. These findings suggest that CLIPR-59 modulates ubiquitination of RIP1, resulting in the formation of Complex-II and thus promoting Caspase-8 activation to induce apoptosis by TNF-α
FOXM1 Induces a Global Methylation Signature That Mimics the Cancer Epigenome in Head and Neck Squamous Cell Carcinoma
The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions
Drosophila Duplication Hotspots Are Associated with Late-Replicating Regions of the Genome
Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases) but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans–Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is being driven to fixation by positive selection
Author Correction: Expanded encyclopaedias of DNA elements in the human and mouse genomes
Online Correction for: https://doi.org/10.1038/s41586-020-2493-4 | Erratum for https://bura.brunel.ac.uk/handle/2438/21299In the version of this article initially published, two members of the ENCODE Project Consortium were missing from the author list. Rizi Ai (Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA) and Shantao Li (Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA) are now included in the author list. These errors have been corrected in the online version of the article : 'Expanded encyclopaedias of DNA elements in the human and mouse genomes'.https://www.nature.com/articles/s41586-021-04226-3https://www.nature.com/articles/s41586-021-04226-
Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics
Genomic rearrangements can result in losses, amplifications, translocations and inversions of DNA fragments thereby modifying genome architecture, and potentially having clinical consequences. Many genomic disorders caused by structural variation have initially been uncovered by early cytogenetic methods. The last decade has seen significant progression in molecular cytogenetic techniques, allowing rapid and precise detection of structural rearrangements on a whole-genome scale. The high resolution attainable with these recently developed techniques has also uncovered the role of structural variants in normal genetic variation alongside single-nucleotide polymorphisms (SNPs). We describe how array-based comparative genomic hybridisation, SNP arrays, array painting and next-generation sequencing analytical methods (read depth, read pair and split read) allow the extensive characterisation of chromosome rearrangements in human genomes
Corymbia Species and Hybrids: Chemical and Physical Foliar Attributes and Implications for Herbivory
Perspectives on ENCODE
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020- 2449-8.© 2020, The Author(s). The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.NIH grants: U01HG007019, U01HG007033, U01HG007036, U01HG007037, U41HG006992, U41HG006993, U41HG006994, U41HG006995, U41HG006996, U41HG006997, U41HG006998, U41HG006999, U41HG007000, U41HG007001, U41HG007002, U41HG007003, U41HG007234, U54HG006991, U54HG006997, U54HG006998, U54HG007004, U54HG007005, U54HG007010 and UM1HG009442
Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo Forest Reserve, Cameroon
Methane fluxes were measured, using static chambers, across a disturbance gradient in a West African semi-deciduous humid forest. Soil-feeding termite biomass was simultaneously determined, in an attempt to examine its influence on the net soil-atmosphere exchange of CH4. CH4 emission rates from individual termite species were determined under laboratory conditions, permitting the gross production of CH4 to be compared with net fluxes to the atmosphere. Both net CH4 oxidation(-) and emission were observed, and CH4 fluxes ranged from – 24.6 to 40.7 ng m–2 s–1. A statistically significant relationship between termite biomass and CH4 flux was observed across the forested sites such that: CH4 flux (ng m–2 s–1) = 4.95 × termite biomass (gm–2)–10.9 (P < 0.001). Rates of CH4 oxidation were on average 60% smaller at the clearfelled and Terminalia plantation sites than at the near-primary forest site. Two of the disturbed sites were net CH4 sources during one of the sampling periods. Disturbance of tropical forests, resulting in a decrease in the CH4 sink capacity of the soil, may therefore increase the contribution of termite-derived CH4 to the atmosphere. Measurements from the mounds of the soil-feeding termites Thoracotermes macrothorax and Cubitermes fungifaber from the old plantation site gave a CH4 emission of 636 and 53.4 ng s–1 mound–1, respectively. The forest floor surrounding the mounds was sampled in three concentric bands. Around the mound of T. macrothorax the soil was a net source of CH4 estimated to contribute a further 148 ng s–1. Soil surrounding the mound of C. fungifaber was mostly a net sink. The mounds of soil-feeding termites are point sources of CH4, which at the landscape scale may exceed the general sink capacity of the soil, to an extent dependent on seasonal variations in soil moisture and level of disturbance
- …