538 research outputs found

    Study of equatorial plasma bubble during January to April 2012 over Kolhapur (India)

    Get PDF
    Over 53 nights of all sky airglow imager data collected during January-April 2012 from the low latitude station Kolhapur (16.68°N, 74.26°E; 10.6°N dip latitude) have been analyzed to study the F-region dynamics through the imaging of OI 630 nm emission line. The observed night airglow data were supported by the ionosonde measurements from Tirunelveli (8.7°N, 77.8°E; 0.51°N dip latitude). Well defined magnetic field aligned depletions were observed during the observation period. Out of 53 nights, 40 nights exhibited the occurrence of north-south aligned equatorial plasma bubbles. These plasma bubbles were found moving towards east with drift speed in range between 70 to 200 m s-1. We have analyzed the zonal drift velocity variation and relation of bubble occurrence with the base height of the ionosphere together with the effects of the geomagnetic Ap and solar flux F10.7 cm index in its first appearance

    Clusters of Basic Amino Acids Contribute to RNA Binding and Nucleolar Localization of Ribosomal Protein L22

    Get PDF
    The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80–93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80–93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA

    Targeting RET in Patients With RET-Rearranged Lung Cancers: Results From the Global, Multicenter RET Registry.

    Get PDF
    Purpose In addition to prospective trials for non-small-cell lung cancers (NSCLCs) that are driven by less common genomic alterations, registries provide complementary information on patient response to targeted therapies. Here, we present the results of an international registry of patients with RET-rearranged NSCLCs, providing the largest data set, to our knowledge, on outcomes of RET-directed therapy thus far. Methods A global, multicenter network of thoracic oncologists identified patients with pathologically confirmed NSCLC that harbored a RET rearrangement. Molecular profiling was performed locally by reverse transcriptase polymerase chain reaction, fluorescence in situ hybridization, or next-generation sequencing. Anonymized data-clinical, pathologic, and molecular features-were collected centrally and analyzed by an independent statistician. Best response to RET tyrosine kinase inhibition administered outside of a clinical trial was determined by RECIST v1.1. Results By April 2016, 165 patients with RET-rearranged NSCLC from 29 centers across Europe, Asia, and the United States were accrued. Median age was 61 years (range, 29 to 89 years). The majority of patients were never smokers (63%) with lung adenocarcinomas (98%) and advanced disease (91%). The most frequent rearrangement was KIF5B-RET (72%). Of those patients, 53 received one or more RET tyrosine kinase inhibitors in sequence: cabozantinib (21 patients), vandetanib (11 patients), sunitinib (10 patients), sorafenib (two patients), alectinib (two patients), lenvatinib (two patients), nintedanib (two patients), ponatinib (two patients), and regorafenib (one patient). The rate of any complete or partial response to cabozantinib, vandetanib, and sunitinib was 37%, 18%, and 22%, respectively. Further responses were observed with lenvantinib and nintedanib. Median progression-free survival was 2.3 months (95% CI, 1.6 to 5.0 months), and median overall survival was 6.8 months (95% CI, 3.9 to 14.3 months). Conclusion Available multikinase inhibitors had limited activity in patients with RET-rearranged NSCLC in this retrospective study. Further investigation of the biology of RET-rearranged lung cancers and identification of new targeted therapeutics will be required to improve outcomes for these patients

    Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer

    Get PDF
    Background:Patients with pancreatic cancer have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) produces localised tissue necrosis but previous studies using the photosensitiser meso-tetrahydroxyphenylchlorin (mTHPC) caused prolonged skin photosensitivity. This study assessed a shorter acting photosensitiser, verteporfin.Methods: Fifteen inoperable patients with locally advanced cancers were sensitised with 0.4 mg kg-1 verteporfin. After 60-90 min, laser light (690 nm) was delivered via single (13 patients) or multiple (2 patients) fibres positioned percutaneously under computed tomography (CT) guidance, the light dose escalating (initially 5 J, doubling after each three patients) until 12 mm of necrosis was achieved consistently.Results:In all, 12 mm lesions were seen consistently at 40 J, but with considerable variation in necrosis volume (mean volume 3.5 cm 3 at 40 J). Minor, self-limiting extrapancreatic effects were seen in multifibre patients. No adverse interactions were seen in patients given chemotherapy or radiotherapy before or after PDT. After PDT, one patient underwent an R0 Whipple's pancreaticoduodenectomy.Conclusions:Verteporfin PDT-induced tumour necrosis in locally advanced pancreatic cancer is feasible and safe. It can be delivered with a much shorter drug light interval and with less photosensitivity than with older compounds. © 2014 Cancer Research UK

    A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA) and curcumin (CCM) are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone.</p> <p>Methods</p> <p>Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED<sub>50</sub>. Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC.</p> <p>Results</p> <p>CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER<sup>- </sup>PR<sup>- </sup>Her2<sup>+</sup>) relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and cell adhesion were upregulated, whereas genes involved in cancer development and progression, metastasis, and cell cycle progression were downregulated. Cellular pools of PPARγ and phospho-p53 were increased by CCM+DHA relative to either compound alone. DHA enhanced cellular uptake of CCM in SK-BR-3 cells without significantly enhancing CCM uptake in other cell lines.</p> <p>Conclusions</p> <p>The combination of DHA and CCM is potentially a dietary supplemental treatment for some breast cancers, likely dependent upon molecular phenotype. DHA enhancement of cellular curcumin uptake is one potential mechanism for observed synergy in SK-BR-3 cells; however, transcriptomic data show that the antiproliferation synergy accompanies many signaling events unique to the combined presence of the two compounds.</p

    Neural antecedents of self-initiated actions in secondary motor cortex

    Get PDF
    The neural origins of spontaneous or self-initiated actions are not well understood and their interpretation is controversial. To address these issues, we used a task in which rats decide when to abort waiting for a delayed tone. We recorded neurons in the secondary motor cortex (M2) and interpreted our findings in light of an integration-to-bound decision model. A first population of M2 neurons ramped to a constant threshold at rates proportional to waiting time, strongly resembling integrator output. A second population, which we propose provide input to the integrator, fired in sequences and showed trial-to-trial rate fluctuations correlated with waiting times. An integration model fit to these data also quantitatively predicted the observed inter-neuronal correlations. Together, these results reinforce the generality of the integration-to-bound model of decision-making. These models identify the initial intention to act as the moment of threshold crossing while explaining how antecedent subthreshold neural activity can influence an action without implying a decision.info:eu-repo/semantics/publishedVersio

    Spatially Resolved [CII] Emission in SPT0346-52: A Hyper-starburst Galaxy Merger at z similar to 5.7

    Get PDF
    SPT0346-52 is one of the most most luminous and intensely star-forming galaxies in the universe, with LFIR > 10 L 13 and S » - - SFR 4200 yr kpc M 1 2. In this paper, we present ~ 0. 15 ALMA observations of the [ ] C II 158 μm emission line in this z = 5.7 dusty star-forming galaxy. We use a pixellated lensing reconstruction code to spatially and kinematically resolve the source-plane [ ] C II and rest-frame 158 μm dust continuum structure at ∼700 pc (∼0 12) resolution. We discuss the [ ] C II deficit with a pixellated study of the L[C II]/LFIR ratio in the source plane. We find that individual pixels within the galaxy follow the same trend found using unresolved observations of other galaxies, indicating that the deficit arises on scales 700 pc. The lensing reconstruction reveals two spatially and kinematically separated components (∼1 kpc and ∼500 km s−1 apart) connected by a bridge of gas. Both components are found to be globally unstable, with Toomre Q instability parameters 1 everywhere. We argue that SPT0346-52 is undergoing a major merger, which is likely driving the intense and compact star formation

    Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1-infected elite controllers or suppressors (ES) maintain undetectable viral loads (< 50 copies/mL) without antiretroviral therapy. The mechanisms of suppression are incompletely understood. Modulation of HIV-1 replication by miRNAs has been reported, but the role of small RNAs in ES is unknown. Using samples from a well-characterized ES cohort, untreated viremic patients, and uninfected controls, we explored the PBMC miRNA profile and probed the relationships of miRNA expression, CD4+ T-cell counts, and viral load.</p> <p>Results</p> <p>miRNA profiles, obtained using multiple acquisition, data processing, and analysis methods, distinguished ES and uninfected controls from viremic HIV-1-infected patients. For several miRNAs, however, ES and viremic patients shared similar expression patterns. Differentially expressed miRNAs included those with reported roles in HIV-1 latency (miR-29 family members, miRs -125b and -150). Others, such as miR-31 and miR-31*, had no previously reported connection with HIV-1 infection but were found here to differ significantly with uncontrolled HIV-1 replication. Correlations of miRNA expression with CD4+ T-cell count and viral load were found, and we observed that ES with low CD4+ T-cell counts had miRNA profiles more closely related to viremic patients than controls. However, expression patterns indicate that miRNA variability cannot be explained solely by CD4+ T-cell variation.</p> <p>Conclusions</p> <p>The intimate involvement of miRNAs in disease processes is underscored by connections of miRNA expression with the HIV disease clinical parameters of CD4 count and plasma viral load. However, miRNA profile changes are not explained completely by these variables. Significant declines of miRs-125b and -150, among others, in both ES and viremic patients indicate the persistence of host miRNA responses or ongoing effects of infection despite viral suppression by ES. We found no negative correlations with viral load in viremic patients, not even those that have been reported to silence HIV-1 in vitro, suggesting that the effects of these miRNAs are exerted in a focused, cell-type-specific manner. Finally, the observation that some ES with low CD4 counts were consistently related to viremic patients suggests that miRNAs may serve as biomarkers for risk of disease progression even in the presence of viral suppression.</p

    Chromosomal Inversions between Human and Chimpanzee Lineages Caused by Retrotransposons

    Get PDF
    The long interspersed element-1 (LINE-1 or L1) and Alu elements are the most abundant mobile elements comprising 21% and 11% of the human genome, respectively. Since the divergence of human and chimpanzee lineages, these elements have vigorously created chromosomal rearrangements causing genomic difference between humans and chimpanzees by either increasing or decreasing the size of genome. Here, we report an exotic mechanism, retrotransposon recombination-mediated inversion (RRMI), that usually does not alter the amount of genomic material present. Through the comparison of the human and chimpanzee draft genome sequences, we identified 252 inversions whose respective inversion junctions can clearly be characterized. Our results suggest that L1 and Alu elements cause chromosomal inversions by either forming a secondary structure or providing a fragile site for double-strand breaks. The detailed analysis of the inversion breakpoints showed that L1 and Alu elements are responsible for at least 44% of the 252 inversion loci between human and chimpanzee lineages, including 49 RRMI loci. Among them, three RRMI loci inverted exonic regions in known genes, which implicates this mechanism in generating the genomic and phenotypic differences between human and chimpanzee lineages. This study is the first comprehensive analysis of mobile element bases inversion breakpoints between human and chimpanzee lineages, and highlights their role in primate genome evolution
    corecore